Microstructured targets demonstrate an enhanced coupling of high-intensity laser pulse to a target and play an important role in laser-induced ion acceleration.Here we demonstrate an approach that enables us to contro...Microstructured targets demonstrate an enhanced coupling of high-intensity laser pulse to a target and play an important role in laser-induced ion acceleration.Here we demonstrate an approach that enables us to control the morphology of amorphous solid water(ASW)microstructured targets,by deposition of water vapor on a charged substrate,cooled down to 100 K.The morphology of the deposited ASW structures is controlled by varying the surface charge on the substrate and the pressure of water vapor.The obtained target is structured as multiple,dense spikes,confined by the charged area on the substrate,with increased aspect ratio of up to 5:1 and having a diameter comparable with the typical spot size of the laser focused onto the target.展开更多
The influences of roasting activation on the particle morphology, microscopic structure, and adsorption properties of natural clinoptilolites were investigated. The experimental results show that the optimal modified ...The influences of roasting activation on the particle morphology, microscopic structure, and adsorption properties of natural clinoptilolites were investigated. The experimental results show that the optimal modified conditions include a calcination temperature at 400 ℃, a roasting time of 0.5 h, and furnace cooling. The ammonia nitrogen removal rate from analog renewable water of the modified clinoptilolites reached 72% in the optimized conditions, which is 12% higher than that of natural ones. Scanning electron microscopy analysis showed that the surface morphology changed, the micro-hole size increased, and the surface became smoother and more uniform after calcination. The single-point total adsorption average pore width increased from 7.74 nm to 10.64 nm.展开更多
文摘Microstructured targets demonstrate an enhanced coupling of high-intensity laser pulse to a target and play an important role in laser-induced ion acceleration.Here we demonstrate an approach that enables us to control the morphology of amorphous solid water(ASW)microstructured targets,by deposition of water vapor on a charged substrate,cooled down to 100 K.The morphology of the deposited ASW structures is controlled by varying the surface charge on the substrate and the pressure of water vapor.The obtained target is structured as multiple,dense spikes,confined by the charged area on the substrate,with increased aspect ratio of up to 5:1 and having a diameter comparable with the typical spot size of the laser focused onto the target.
基金Funded by the National Natural Science Foundation of China(No.51174017)
文摘The influences of roasting activation on the particle morphology, microscopic structure, and adsorption properties of natural clinoptilolites were investigated. The experimental results show that the optimal modified conditions include a calcination temperature at 400 ℃, a roasting time of 0.5 h, and furnace cooling. The ammonia nitrogen removal rate from analog renewable water of the modified clinoptilolites reached 72% in the optimized conditions, which is 12% higher than that of natural ones. Scanning electron microscopy analysis showed that the surface morphology changed, the micro-hole size increased, and the surface became smoother and more uniform after calcination. The single-point total adsorption average pore width increased from 7.74 nm to 10.64 nm.