期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Optimization of water-urban-agricultural-ecological land use pattern:A case study of Guanzhong Basin in the southern Loess Plateau of Shaanxi Province,China
1
作者 Sai Wang Bin Wu +6 位作者 Hai-xue Li Min-min Zhao Lei Yuan Xi Wu Tao Ma Fu-cheng Li Shuang-bao Han 《China Geology》 CAS CSCD 2024年第3期480-493,共14页
Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Prov... Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%. 展开更多
关键词 Coupled Ground-water and Surface-water Flow Model(GSFLOW) Land use patterns water resources optimization Ecological and economic benefits Coupling model Hydrological environmental engineering Guanzhong Basin Southern Loess Plateau Yellow River basin
下载PDF
Computer-Aided Diagnosis for Tuberculosis Classification with Water Strider Optimization Algorithm 被引量:1
2
作者 José Escorcia-Gutierrez Roosvel Soto-Diaz +4 位作者 Natasha Madera Carlos Soto Francisco Burgos-Florez Alexander Rodríguez Romany F.Mansour 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1337-1353,共17页
Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screenin... Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screening and triage.At the same time,CXR interpretation is a time-consuming and subjective process.Furthermore,high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis.Therefore,computer-aided diagnosis(CAD)models using machine learning(ML)and deep learning(DL)can be designed for screening TB accurately.With this motivation,this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification(WSODTL-TBC)model on Chest X-rays(CXR).The presented WSODTL-TBC model aims to detect and classify TB on CXR images.Primarily,the WSODTL-TBC model undergoes image filtering techniques to discard the noise content and U-Net-based image segmentation.Besides,a pre-trained residual network with a two-dimensional convolutional neural network(2D-CNN)model is applied to extract feature vectors.In addition,the WSO algorithm with long short-term memory(LSTM)model was employed for identifying and classifying TB,where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM methodology,showing the novelty of the work.The performance validation of the presented WSODTL-TBC model is carried out on the benchmark dataset,and the outcomes were investigated in many aspects.The experimental development pointed out the betterment of the WSODTL-TBC model over existing algorithms. 展开更多
关键词 Computer-aided diagnosis water strider optimization deep learning chest x-rays transfer learning
下载PDF
Three-dimensional physical simulation and optimization of water injection of a multi-well fractured-vuggy unit 被引量:6
3
作者 Ji-Rui HOU Ze-Yu Zheng +4 位作者 Zhao-Jie Song Min LUO Hai-Bo Li Li Zhang Deng-Yu Yuan 《Petroleum Science》 SCIE CAS CSCD 2016年第2期259-271,共13页
With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing... With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing numerical simulation methods in representing fractured- vuggy carbonate reservoirs makes numerical simulation difficult to characterize the fluid flow in these reservoirs. In this paper, based on a geological example unit in the Tahe Oilfield, a three-dimensional physical model was designed and constructed to simulate fluid flow in a fractured-vuggy reservoir according to similarity criteria. The model was validated by simulating a bottom water drive reservoir, and then subsequent water injection modes were optimized. These were continuous (constant rate), intermittent, and pulsed injection of water. Experimental results reveal that due to the unbalanced formation pressure caused by pulsed water injection, the swept volume was expanded and consequently the highest oil recovery increment was achieved. Similar to continuous water injection, intermit- tent injection was influenced by factors including the connectivity of the fractured-vuggy reservoir, well depth, and the injection-production relationship, which led to a relative low oil recovery. This study may provide a constructive guide to field production and for the devel- opment of the commercial numerical models specialized for fractured-vuggy carbonate reservoirs. 展开更多
关键词 Multi-well fractured-vuggy unit Three-dimensional physical model Similarity criteria Bottom water drive. optimization of water injection mode
下载PDF
Effect of water and fertilizer coupling optimization test on water use efficiency of rice in black soil regions 被引量:4
4
作者 LIN Yanyu ZHANG Zhongxue +1 位作者 XU Dan NIE Tangzhe 《排灌机械工程学报》 EI CSCD 北大核心 2016年第2期151-156,共6页
How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical mode... How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical model with N,P,K,irrigation water( W) and water use efficiency( WUE),which was set up under the condition of controlled irrigation with quadratic D- 416 optimized saturation design. The results show that the decending order of single factor' s influence on the WUE was N,K,P and W. All the interactions between N&P,N&K,N&W,K&P,P&W and K&W on the WUE were raised initially,and when reached a certain value,they began to decline. The decending order of each interaction on the WUE was K&P,K&W,N&K,N&P,P&W and N&W. When the WUE was targeted within 1. 8- 2. 5 kg / km^3,an optimized proportion plan was obtained in the 95% confidence interval,i. e. N 87. 76- 103. 32 kg / hm^2,K_2 O 52. 37- 66. 53 kg / hm^2 and P_2O_536. 80- 46. 71 kg / hm^2. Furthermore,the late tillering of the soil moisture content was 70. 07%- 72. 57% of the saturated moisture content. 展开更多
关键词 black soil RICE controlled irrigation water and fertilizer optimization plan WUE
下载PDF
Water resources optimization and eco-environmental protection in Qaidam Basin
5
作者 FANG Chuang-lin~1, BAO Chao~2 (1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China 2. Dept. of Geography, Peking University, Beijing 100871, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第2期231-238,共8页
In order to realize sustainable development of the arid area of Northwest China, rational water resources exploitation and optimization are primary prerequisites. Based on the essential principle of sustainable develo... In order to realize sustainable development of the arid area of Northwest China, rational water resources exploitation and optimization are primary prerequisites. Based on the essential principle of sustainable development, this paper puts forward a general idea on water resources optimization and eco-environmental protection in Qaidam Basin, and identifies the competitive multiple targets of water resources optimization. By some qualitative methods such as Input-output Model & AHP Model and some quantitative methods such as System Dynamics Model & Produce Function Model, some standard plans of water resources optimization come into being. According to the Multiple Targets Decision by the Closest Value Model, the best plan of water resources optimization, eco-environmental protection and sustainable development in Qaidam Basin is finally decided. 展开更多
关键词 water resources optimization Multiple Targets Decision by the Closest Value Model eco-environmental protection Qaidam Basin
下载PDF
Provisioning Intelligent Water Wave Optimization Approach for Underwater Acoustic Wireless Sensor Networks
6
作者 M.Manikandan A.Rajiv Kannan 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期625-641,共17页
In the Acoustics channel,it is incredibly challenging to offer data transfer for time-sourced applications in an energy-efficient manner due to higher error rate and propagation delay.Subsequently,conventional re-tran... In the Acoustics channel,it is incredibly challenging to offer data transfer for time-sourced applications in an energy-efficient manner due to higher error rate and propagation delay.Subsequently,conventional re-transmission over any failure generally initiates significantly larger end-to-end delay,and therefore it is not probable for time-based services.Moreover,standard techniques without any re-transmission consume enormous energy.This investigation proposes a novel multi-hop energy-aware transmission-based intelligent water wave optimization strategy.It ensures reduced end-to-end while attaining potential amongst overall energy efficiency end-to-end packet delay.It merges a naturally inspired meta-heuristic approach with multi-hop routing for data packets to reach the destination.The appropriate design of this Meta heuristic-based energy-aware scheme consumes lesser energy than the conventional one-hop transmission strategy without re-transmission.However,there is no hop-by-hop re-transmission facilitated.The proposed model shows only lesser delay than conventional methods with re-transmission.This work facilitates extensive work to carry out the proposed model performance with the MATLAB simulation environment.The results illustrate that the model is exceptionally energyefficient with lesser packet delays.With 500 nodes,the packet delivery ratio of proposed model is 100%,average delay is reduced by 2%,total energy consumption is 8 J,average packet redundancy is 1.856,and idle energy is 6.9Mwh.The proposed model outperforms existing approaches like OSF,AOR,and DMR respectively. 展开更多
关键词 Acoustic applications energy efficiency network communications underwater sensor networks meta-heuristic approach intelligent water wave optimization
下载PDF
Application of LINGO to the Solution of the Water Supply System′s Optimal Operation Model 被引量:1
7
作者 牛志广 张宏伟 《Transactions of Tianjin University》 EI CAS 2002年第4期246-250,共5页
In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model w... In this research, LINGO is used successfully to solve the water supply system′s optimal operation model. Firstly, the language of LINGO and the using method were studied intensively, on the basis of which the model was transformed to LINGO form and solved successfully. Secondly, the research on the interface between LINGO and the popular office software was made. The optimization software was developed, which had Excel as the workspace and LINGO as the core of computation. Through practice, this software was found stable, easy to use and suitable for the application to the water supply corporations. 展开更多
关键词 LINGO optimal operation of water supply system solution of the model INTERFACE
全文增补中
Impact of Untreated Sedimentation Tank Sludge Water Recycle on Water Quality During Treatment of Low Turbidity Water 被引量:1
8
作者 Ronggang Xu Yongpeng Xu +3 位作者 Fuyi Cui Li He Dong Wang Qingfeng Su 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期79-86,共8页
The overall purpose of this research is to examine the impact of untreated sedimentation tank sludge water( USTSW) recycle on water quality during treatment of low turbidity water in coagulation—sedimentation process... The overall purpose of this research is to examine the impact of untreated sedimentation tank sludge water( USTSW) recycle on water quality during treatment of low turbidity water in coagulation—sedimentation processes. 950 m L of raw water and different concentrations of 50 m L USTSW are injected into six 1 000 m L beakers without coagulant.The results indicate that USTSW characterized as accumulated suspended solids and organic matter has active ingredients,which possess the equivalent function of coagulant. The optimal blended water turbidity is in the range of 10-20 NTU,within which USTSW recycle achieves the highest save coagulant rate. The mechanism of strengthening coagulation effect when USTSW recycle mainly depends on the chemical effect and physical effect. What is more,through scanning electron microscopy( SEM),it is found that the floc structures with USTSW recycle are more compact than those without USTSW recycle. Besides,the water quality parameters of color,NH3-N,CODMn,UV254,total aluminum,total manganese when USTSW recycle is better than the raw water without recycle,indicating that USTSW recycle can improve water quality with strengthening coagulation effect. 展开更多
关键词 untreated sedimentation tank sludge water recycle low turbidity optimal blended water turbidity water quality
下载PDF
Experimental Design Technique on Removal of Hydrogen Sulfide using CaO-eggshells Dispersed onto Palm Kernel Shell Activated Carbon:Experiment,Optimization,Equilibrium and Kinetic Studies
9
作者 OMAR Abed Habecb RAMESH Kanthasamy +1 位作者 GOMAA A. M. Ali ROSLI bin Mohd Yunus 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期305-320,共16页
This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface ... This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface methodology technique was used to optimize the process conditions and they were found to be: 500 mg/L for H2S initial concentration, 540 min for contact time and 1 g for adsorbent mass. The impacts of three arrangement factors(calcination temperature of impregnated activated carbon(IAC), the calcium solution concentration and contact time of calcination) on the H2S removal efficiency and impregnated AC yield were investigated. Both responses IAC yield(IACY, %) and removal efficiency(RE, %) were maximized to optimize the IAC preparation conditions. The optimum preparation conditions for IACY and RE were found as follows: calcination temperature of IAC of 880 ℃, calcium solution concentration of 49.3% and calcination contact time of 57.6 min, which resulted in 35.8% of IACY and 98.2% RE. In addition, the equilibrium and kinetics of the process were investigated. The adsorbent was characterized using TGA, XRD, FTIR, SEM/EDX, and BET. The maximum monolayer adsorption capacity was found to be 543.47 mg/g. The results recommended that the composite of PKSAC and Ca O could be a useful material for H2S containing wastewater treatment. 展开更多
关键词 water treatment hydrogen sulfide response surface methodology optimization activated carbon adsorption isotherm kinetics calcium oxide
下载PDF
Multi-objective optimal water resources management for fresh water and saline water in shallow aquifers
10
《Global Geology》 1998年第1期107-107,共1页
关键词 Multi-objective optimal water resources management for fresh water and saline water in shallow aquifers
下载PDF
Study on optimal exploitation of the bedrock fissure water in the center of Changchun city
11
《Global Geology》 1998年第1期111-112,共2页
关键词 Study on optimal exploitation of the bedrock fissure water in the center of Changchun city
下载PDF
Optimizing control of groundwater table and rational allocation of water resources of east groundwater funnel area in Shengyang city
12
《Global Geology》 1998年第1期103-103,共1页
关键词 area Optimizing control of groundwater table and rational allocation of water resources of east groundwater funnel area in Shengyang city
下载PDF
Deep-reinforcement-learning-based water diversion strategy 被引量:2
13
作者 Qingsong Jiang Jincheng Li +6 位作者 Yanxin Sun Jilin Huang Rui Zou Wenjing Ma Huaicheng Guo Zhiyun Wang Yong Liu 《Environmental Science and Ecotechnology》 SCIE 2024年第1期68-79,共12页
Water diversion is a common strategy to enhance water quality in eutrophic lakes by increasing available water resources and accelerating nutrient circulation.Its effectiveness depends on changes in the source water a... Water diversion is a common strategy to enhance water quality in eutrophic lakes by increasing available water resources and accelerating nutrient circulation.Its effectiveness depends on changes in the source water and lake conditions.However,the challenge of optimizing water diversion remains because it is difficult to simultaneously improve lake water quality and minimize the amount of diverted water.Here,we propose a new approach called dynamic water diversion optimization(DWDO),which combines a comprehensive water quality model with a deep reinforcement learning algorithm.We applied DWDO to a region of Lake Dianchi,the largest eutrophic freshwater lake in China and validated it.Our results demonstrate that DWDO significantly reduced total nitrogen and total phosphorus concentrations in the lake by 7%and 6%,respectively,compared to previous operations.Additionally,annual water diversion decreased by an impressive 75%.Through interpretable machine learning,we identified the impact of meteorological indicators and the water quality of both the source water and the lake on optimal water diversion.We found that a single input variable could either increase or decrease water diversion,depending on its specific value,while multiple factors collectively influenced real-time adjustment of water diversion.Moreover,using well-designed hyperparameters,DWDO proved robust under different uncertainties in model parameters.The training time of the model is theoretically shorter than traditional simulation-optimization algorithms,highlighting its potential to support more effective decisionmaking in water quality management. 展开更多
关键词 Dynamic water diversion optimization Deep reinforcement learning Process-based model Explainable decision-making Parameter uncertainty
原文传递
Dimensionality Reduction Using Optimized Self-Organized Map Technique for Hyperspectral Image Classification
14
作者 S.Srinivasan K.Rajakumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2481-2496,共16页
The high dimensionalhyperspectral image classification is a challenging task due to the spectral feature vectors.The high correlation between these features and the noises greatly affects the classification performanc... The high dimensionalhyperspectral image classification is a challenging task due to the spectral feature vectors.The high correlation between these features and the noises greatly affects the classification performances.To overcome this,dimensionality reduction techniques are widely used.Traditional image processing applications recently propose numerous deep learning models.However,in hyperspectral image classification,the features of deep learning models are less explored.Thus,for efficient hyperspectral image classification,a depth-wise convolutional neural network is presented in this research work.To handle the dimensionality issue in the classification process,an optimized self-organized map model is employed using a water strider optimization algorithm.The network parameters of the self-organized map are optimized by the water strider optimization which reduces the dimensionality issues and enhances the classification performances.Standard datasets such as Indian Pines and the University of Pavia(UP)are considered for experimental analysis.Existing dimensionality reduction methods like Enhanced Hybrid-Graph Discriminant Learning(EHGDL),local geometric structure Fisher analysis(LGSFA),Discriminant Hyper-Laplacian projection(DHLP),Group-based tensor model(GBTM),and Lower rank tensor approximation(LRTA)methods are compared with proposed optimized SOM model.Results confirm the superior performance of the proposed model of 98.22%accuracy for the Indian pines dataset and 98.21%accuracy for the University of Pavia dataset over the existing maximum likelihood classifier,and Support vector machine(SVM). 展开更多
关键词 Hyperspectral image dimensionality reduction depth-wise separable model water strider optimization self-organized map
下载PDF
Water flooding optimization with adjoint model under control constraints 被引量:2
15
作者 张凯 张黎明 +2 位作者 姚军 陈玉雪 路然然 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第1期75-85,共11页
The oil recovery enhancement is a major technical issue in the development of oil and gas fields. The smart oil field is an effective way to deal with the issue. It can achieve the maximum profits in the oil productio... The oil recovery enhancement is a major technical issue in the development of oil and gas fields. The smart oil field is an effective way to deal with the issue. It can achieve the maximum profits in the oil production at a minimum cost, and represents the future direction of oil fields. This paper discusses the core of the smart field theory, mainly the real-time optimization method of the injection-production rate of water-oil wells in a complex oil-gas filtration system. Computing speed is considered as the primary prerequisite because this research depends very much on reservoir numerical simulations and each simulation may take several hours or even days. An adjoint gradient method of the maximum theory is chosen for the solution of the optimal control variables. Conven-tional solving method of the maximum principle requires two solutions of time series: the forward reservoir simulation and the backward adjoint gradient calculation. In this paper, the two processes are combined together and a fully implicit reservoir simulator is developed. The matrixes of the adjoint equation are directly obtained from the fully implicit reservoir simulation, which accelera-tes the optimization solution and enhances the efficiency of the solving model. Meanwhile, a gradient projection algorithm combined with the maximum theory is used to constrain the parameters in the oil field development, which make it possible for the method to be applied to the water flooding optimization in a real oil field. The above theory is tested in several reservoir cases and it is shown that a better development effect of the oil field can be achieved. 展开更多
关键词 water flooding optimization adjoint model fully implicit simulation constrained optimization gradient projection
原文传递
Hybrid Physics and Data-driven Contingency Filtering for Security Operation of Micro Energy-water Nexus
16
作者 Mostafa Goodarzi Qifeng Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第5期1820-1831,共12页
This paper investigates a novel engineering problem,i.e.,security-constrained multi-period operation of micro energywater nexuses.This problem is computationally challenging because of its high nonlinearity,nonconvexi... This paper investigates a novel engineering problem,i.e.,security-constrained multi-period operation of micro energywater nexuses.This problem is computationally challenging because of its high nonlinearity,nonconvexity,and large dimension.We propose a two-stage iterative algorithm employing a hybrid physics and data-driven contingency filtering(CF)method and convexification to solve it.The convexified master problem is solved in the first stage by considering the base case operation and binding contingencies set(BCS).The second stage updates BCS using physics-based data-driven methods,which include dynamic and filtered data sets.This method is faster than existing CF methods because it relies on offline optimization problems and contains a limited number of online optimization problems.We validate effectiveness of the proposed method using two different case studies:the IEEE 13-bus power system with the EPANET 8-node water system and the IEEE 33-bus power system with the Otsfeld 13-node water system. 展开更多
关键词 Contingency filtering micro energy-water nexus multi-period secure operation optimal power and water flow physics-guided data-driven
原文传递
Optimal locations of monitoring stations in water distribution systems under multiple demand patterns: a flaw of demand coverage method and modification 被引量:3
17
作者 Shuming LIU Wenjun LIU +1 位作者 Jinduan CHEN Qi WANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第2期204-212,共9页
A flaw of demand coverage method in solving optimal monitoring stations problem under multiple demand patterns was identified in this paper. In the demand coverage method, the demand coverage of each set of monitoring... A flaw of demand coverage method in solving optimal monitoring stations problem under multiple demand patterns was identified in this paper. In the demand coverage method, the demand coverage of each set of monitoring stations is calculated by accumulating their demand coverage under each demand pattern, and the impact of temporal distribution between different time periods or demand patterns is ignored. This could lead to miscalculation of the optimal locations of the monitoring stations. To overcome this flaw, this paper presents a Demand Coverage Index (DCI) based method. The optimization considers extended period unsteady hydrau- lics due to the change of nodal demands with time. The method is cast in a genetic algorithm framework for integration with Environmental Protection Agency Net (EPANET) and is demonstrated through example applica- tions. Results show that the set of optimal locations of monitoring stations obtained using the DCI method can represent the water quality of water distribution systems under multiple demand patterns better than the one obtained using previous methods. 展开更多
关键词 demand coverage monitoring optimization water distribution network water quality
原文传递
Exploring price effects on the residential water conservation technology diffusion process: a case study of Tianjin city 被引量:2
18
作者 Junying CHU Hao WANG Can WANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2013年第5期688-698,共11页
Reforms of the water pricing management system and the establishment of a flexible water pricing system are significant for cities in northern China to tackle their critical water issues. The WATAP (Water conserva- t... Reforms of the water pricing management system and the establishment of a flexible water pricing system are significant for cities in northern China to tackle their critical water issues. The WATAP (Water conserva- tion Technology Adoption Processes) model is developed in order to capture the water conservation technology adoption process under different price scenarios with disaggregate water demands down to the end use level. This model is explicitly characterized by the technological selection process under maximum marginal benefit assumption by different categories of households. In particular, when households need to purchase water devices in the provision market with the consideration of complex factors such as the life span, investment and operating costs of the device, as well as the regulated water price by the government. Applied to Tianjin city, four scenarios of water price evolutions for a long-term perspective (from year 2011 to 2030) are considered, including BAU (Business As Usual), SP1 (Scenario of Price increase with constant annual rate), SP2 (Scenario of Price increase every four years) and SP3 (Scenario of Price increase with affordable constraint), considering many factors such as historic trends, affordability and incentives for conservation. Results show that on aggregate 2.3%, 11.0% and 18.2% of fresh water can be saved in the residential sector in scenario SP1, SP2 and SP3, respec- tively, compared with the BAU scenario in the year 2030. The water price signals can change the market shares of different water appliances, as well as the water end use structure of households, and ultimately improve water use efficiency. The WATAP model may potentially be a helpful tool to provide insights for policy makers on water conservation technology policy analysis and assessment. 展开更多
关键词 technology selection model optimization water price scenario analysis consumer behavior
原文传递
Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM(1,1) model 被引量:3
19
作者 Yan An Zhihong Zou Yanfei Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第3期158-164,共7页
An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating s... An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating sequence was set in turn as an initial condition to determine which alternative would yield the highest forecasting accuracy. To test the forecasting performance, the optimized models with different initial conditions were then used to simulate dissolved oxygen concentrations in the Guantlng reservoir inlet and outlet (China). The empirical results show that the optimized model can remarkably improve forecasting accuracy, and the particle swarm optimization technique is a good tool to solve parameter optimization problems. What's more, the optimized model with an initial condition that performs well in in-sample simulation may not do as well as in out-of-sample forecasting. 展开更多
关键词 water quality forecasting Dissolved oxygen Nonlinear grey Bernoulli model Particle swarm optimization Initial condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部