The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO\+-\-3\|N and effective ...The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO\+-\-3\|N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH\+-\-4\|N (NH\-3\|N), NO\+-\-2\|N ; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect exerting speed of PSB was slower, but the effect sustaining time was longer; (6) the appropriate concentration of PSB application in saline alkali wetland ponds was 10×10 -6 mg/L, one time effective period was more than 15 days. So PSB was an efficient water quality improver in saline alkali ponds.展开更多
This article describes the integrated modeling approach for planning the size and the operation of constructed wetlands for maximizing retention of nonpoint source pollutant loads and reservoir water-quality improveme...This article describes the integrated modeling approach for planning the size and the operation of constructed wetlands for maximizing retention of nonpoint source pollutant loads and reservoir water-quality improvement at a catchment scale. The experimental field-scale wetland systems (four sets, 0.88 ha each) have been in operation since 2002, where water depth was maintained at 30-50 cm and hydraulic loading rate was at 6.3-18.8 cm/day. The wetland system was found to be adequate for treating polluted stream water with stable removal efficiency even during the winter. The integrated modeling system (modified-BASINS) was applied to the Seokmoon estuarine reservoir watershed and calibrated with monitoring data from constructed wetland, stream, and reservoir. The calibrated integrated modeling system estimated that constructing wetlands on 0.5% (about 114 ha) of the watershed area at the mouth of reservoir could reduce 11.61% and 13.49% of total external nitrogen and phosphorus loads, respectively. It also might improve the nitrogen and phosphorus concentration of the reservoir by 9.69% and 16.48%, respectively. The study suggested that about 0.1%-1.0% of the watershed area should be allocated for constructed wetland to meet specified water-quality standards for the estuarine reservoir at the polder area where land use planning is relatively less complicated.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
The Yongding New River is essential for the water supplies of Tianjin.To date,there is no comprehensive report that assesses the year-round water quality of the Yongding New River Main stream.Moreover,little attention...The Yongding New River is essential for the water supplies of Tianjin.To date,there is no comprehensive report that assesses the year-round water quality of the Yongding New River Main stream.Moreover,little attention has been given to determining a combined weight for improving the traditional comprehensive water quality identification index(ICWQII)by the game theory.Seven water quality parameters were investigated monthly along the main stream of the Yongding New River from May 2018 to April 2019.Organic contaminants and nitrogen pollution were mainly caused by point sources pollution,and the total phosphorus mainly by non-point source pollution.Dramatic spatio-temporal variations of water quality parameters were jointly caused by different pollutant sources and hydrometeorological factors.In terms of this study,an improved comprehensive water quality identification index(ICWQII)based on entropy weight or variation coefficient and traditional CWQII underestimated the water qualities,and an ICWQII based on the superstandard multiple method overvalued the assessments.By contrast,water qualities assessments done with an ICWQII based on the game theory matched perfectly with the practical situation.The ICWQII based on game theory proposed in this study takes into account not only the degree of disorder and variation of water quality data,but also the influence of standard-exceeded pollution indicators,whose results are relatively reasonable.All findings and the ICWQII based on game theory can provide scientific support for decisions related to the water environment management of the Yongding New River and other waters.展开更多
The ability of a wet swale,constructed in an area of poor soil permeability,to manage runoff from a roadway was monitored through 27 storm events over a period of 8 months.During the monitoring period,the wet swale re...The ability of a wet swale,constructed in an area of poor soil permeability,to manage runoff from a roadway was monitored through 27 storm events over a period of 8 months.During the monitoring period,the wet swale reduced the total runoff volume by 50.4%through exfiltration and evapotranspiration.The wet swale significantly decreased the influent pollutant concentrations,and the effluent mean concentrations of total suspended solids,total phosphorus,chemical oxygen demand,ammonium,oxidized nitrogen,and total nitrogen in the effluent were 31 mg/L,0.10 mg/L,29 mg/L,0.52 mg/L,0.35 mg/L and1.28 mg/L,respectively.Pollutant loads were also substantially reduced from 70%to 85%.Plant uptake played an important role in nutrient removal in the wet swale.Approximately half of the nitrogen(53.8%)and phosphorus(51.5%)that entered the wet swale was incorporated in above-ground plants.It is shown that wet swales are useful for managing runoff from roads in areas of poor soil permeability.展开更多
Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone Rive...Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone River into the lake. After 2000, the dominant species of diatoms, mainly Cyclotella sp., have been replacing blue-green algae, mainly Microcystis aeruginosa in Lake Tega. This transition of dominant species would be due to the dilution, but the detail mechanism has not been understood yet. This study examined the relationship between phosphorus fluctuation caused by river water dilution to Lake Tega and dominance of algal species, M. aeruginosa or Cyclotella sp. based on the single-species and the mixed-species culture experiments. The single-species culture experiment showed that the half-saturation constant and uptake rate of phosphorus were one order lower and seven times higher for M. aeruginosa than those for Cyclotella sp. These findings implied that M. aeruginosa would possess a potential for the growth and survival over Cyclotella sp. in the phosphorus limited condition. The superiority of M. aeruginosa was reflected in the outcome of the mixed-species culture experiment, i.e., dominance of M. aeruginosa, even phosphorus concentration was lowered to 0.01 mg-P/L. Therefore, it could be concluded that the decrease in phosphorus concentration due to the river water dilution to Lake Tega would be interpreted as a minor factor for the transition of dominant species from M. aeruginosa to Cyclotella sp.展开更多
Hydrodynamic, physical, and biochemical processes in the Baiyangdian Lake water environment were analyzed comprehensively. An eutrophication eco- dynamics model including the effects of reed resistance on flow was cou...Hydrodynamic, physical, and biochemical processes in the Baiyangdian Lake water environment were analyzed comprehensively. An eutrophication eco- dynamics model including the effects of reed resistance on flow was coupled with the hydrodynamics governing equations. An improvement on the Water Quality Analysis Simulation Program (WASP, a modeling system intro- duced by the US Environmental Protection Agency) is established, which uses the zooplankton kinetic equation. The model simulates water quality constituents associated with eutrophication in the lake, including phytoplankton, zooplankton, nitrogen, phosphorus, dissolved oxygen, and others. Various kinetic coefficients were calibrated using measured data or information from relevant literature, to study eutrophication in the lake. The values calculated by the calibrated model agree well with field data, including ammonia nitrogen, total nitrogen, total phosphorus and dissolved oxygen. Changes related to nutrition and dissolved oxygen during the processes were simulated. The present model describes the temporal variation of water quality in Baiyangdian Lake with reasonable accuracy. Deviations between model-simulated and observed values are discussed. As an ideal tool for environmental management of the lake, this model can be used to predict its water quality, and be used in research to examine the eutrophication process.展开更多
文摘The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO\+-\-3\|N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH\+-\-4\|N (NH\-3\|N), NO\+-\-2\|N ; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect exerting speed of PSB was slower, but the effect sustaining time was longer; (6) the appropriate concentration of PSB application in saline alkali wetland ponds was 10×10 -6 mg/L, one time effective period was more than 15 days. So PSB was an efficient water quality improver in saline alkali ponds.
文摘This article describes the integrated modeling approach for planning the size and the operation of constructed wetlands for maximizing retention of nonpoint source pollutant loads and reservoir water-quality improvement at a catchment scale. The experimental field-scale wetland systems (four sets, 0.88 ha each) have been in operation since 2002, where water depth was maintained at 30-50 cm and hydraulic loading rate was at 6.3-18.8 cm/day. The wetland system was found to be adequate for treating polluted stream water with stable removal efficiency even during the winter. The integrated modeling system (modified-BASINS) was applied to the Seokmoon estuarine reservoir watershed and calibrated with monitoring data from constructed wetland, stream, and reservoir. The calibrated integrated modeling system estimated that constructing wetlands on 0.5% (about 114 ha) of the watershed area at the mouth of reservoir could reduce 11.61% and 13.49% of total external nitrogen and phosphorus loads, respectively. It also might improve the nitrogen and phosphorus concentration of the reservoir by 9.69% and 16.48%, respectively. The study suggested that about 0.1%-1.0% of the watershed area should be allocated for constructed wetland to meet specified water-quality standards for the estuarine reservoir at the polder area where land use planning is relatively less complicated.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
基金supported by the National Natural Science Foundation of China(No.41807386)Tianjin Financial Budget Project of 2018。
文摘The Yongding New River is essential for the water supplies of Tianjin.To date,there is no comprehensive report that assesses the year-round water quality of the Yongding New River Main stream.Moreover,little attention has been given to determining a combined weight for improving the traditional comprehensive water quality identification index(ICWQII)by the game theory.Seven water quality parameters were investigated monthly along the main stream of the Yongding New River from May 2018 to April 2019.Organic contaminants and nitrogen pollution were mainly caused by point sources pollution,and the total phosphorus mainly by non-point source pollution.Dramatic spatio-temporal variations of water quality parameters were jointly caused by different pollutant sources and hydrometeorological factors.In terms of this study,an improved comprehensive water quality identification index(ICWQII)based on entropy weight or variation coefficient and traditional CWQII underestimated the water qualities,and an ICWQII based on the superstandard multiple method overvalued the assessments.By contrast,water qualities assessments done with an ICWQII based on the game theory matched perfectly with the practical situation.The ICWQII based on game theory proposed in this study takes into account not only the degree of disorder and variation of water quality data,but also the influence of standard-exceeded pollution indicators,whose results are relatively reasonable.All findings and the ICWQII based on game theory can provide scientific support for decisions related to the water environment management of the Yongding New River and other waters.
基金Project(2011ZX07303-002) supported by National Water Pollution Control and Management Technology Major Projects,China
文摘The ability of a wet swale,constructed in an area of poor soil permeability,to manage runoff from a roadway was monitored through 27 storm events over a period of 8 months.During the monitoring period,the wet swale reduced the total runoff volume by 50.4%through exfiltration and evapotranspiration.The wet swale significantly decreased the influent pollutant concentrations,and the effluent mean concentrations of total suspended solids,total phosphorus,chemical oxygen demand,ammonium,oxidized nitrogen,and total nitrogen in the effluent were 31 mg/L,0.10 mg/L,29 mg/L,0.52 mg/L,0.35 mg/L and1.28 mg/L,respectively.Pollutant loads were also substantially reduced from 70%to 85%.Plant uptake played an important role in nutrient removal in the wet swale.Approximately half of the nitrogen(53.8%)and phosphorus(51.5%)that entered the wet swale was incorporated in above-ground plants.It is shown that wet swales are useful for managing runoff from roads in areas of poor soil permeability.
文摘Tega-numa (Lake Tega) is one of the eutrophic lakes in Japan. For the improvement of water quality in Lake Tega, the North- chiba Water Conveyance Channel was constructed in 2000, which transfer water from Tone River into the lake. After 2000, the dominant species of diatoms, mainly Cyclotella sp., have been replacing blue-green algae, mainly Microcystis aeruginosa in Lake Tega. This transition of dominant species would be due to the dilution, but the detail mechanism has not been understood yet. This study examined the relationship between phosphorus fluctuation caused by river water dilution to Lake Tega and dominance of algal species, M. aeruginosa or Cyclotella sp. based on the single-species and the mixed-species culture experiments. The single-species culture experiment showed that the half-saturation constant and uptake rate of phosphorus were one order lower and seven times higher for M. aeruginosa than those for Cyclotella sp. These findings implied that M. aeruginosa would possess a potential for the growth and survival over Cyclotella sp. in the phosphorus limited condition. The superiority of M. aeruginosa was reflected in the outcome of the mixed-species culture experiment, i.e., dominance of M. aeruginosa, even phosphorus concentration was lowered to 0.01 mg-P/L. Therefore, it could be concluded that the decrease in phosphorus concentration due to the river water dilution to Lake Tega would be interpreted as a minor factor for the transition of dominant species from M. aeruginosa to Cyclotella sp.
文摘Hydrodynamic, physical, and biochemical processes in the Baiyangdian Lake water environment were analyzed comprehensively. An eutrophication eco- dynamics model including the effects of reed resistance on flow was coupled with the hydrodynamics governing equations. An improvement on the Water Quality Analysis Simulation Program (WASP, a modeling system intro- duced by the US Environmental Protection Agency) is established, which uses the zooplankton kinetic equation. The model simulates water quality constituents associated with eutrophication in the lake, including phytoplankton, zooplankton, nitrogen, phosphorus, dissolved oxygen, and others. Various kinetic coefficients were calibrated using measured data or information from relevant literature, to study eutrophication in the lake. The values calculated by the calibrated model agree well with field data, including ammonia nitrogen, total nitrogen, total phosphorus and dissolved oxygen. Changes related to nutrition and dissolved oxygen during the processes were simulated. The present model describes the temporal variation of water quality in Baiyangdian Lake with reasonable accuracy. Deviations between model-simulated and observed values are discussed. As an ideal tool for environmental management of the lake, this model can be used to predict its water quality, and be used in research to examine the eutrophication process.