The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake T...The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.展开更多
Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well a...Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.展开更多
Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality ...Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.展开更多
This study investigates the hydrochemical formation mechanism of shallow groundwater in the Upper Kebir upstream sub-basin(Northeastern Algeria).The objective is to evaluate water quality suitability for domestic purp...This study investigates the hydrochemical formation mechanism of shallow groundwater in the Upper Kebir upstream sub-basin(Northeastern Algeria).The objective is to evaluate water quality suitability for domestic purposes through the application of water quality index(WQI).A total of 24 water points(wells and borewells)evenly distributed in the basin were collected and analyzed in the laboratory for determining the major ions and other geochemical parameters in the groundwater.The groundwater hydrochemical types were identified as Cl–Na and Cl–HCO_(3)^(–)Na,with the dominant major ions were found in the order of Na^(+)>Ca^(2+)>Mg^(2+)for cations,and Cl^(−)>SO_(4)^(2−)>HCO_(3)^(–)>NO_(3)^(−)for anions.Results suggest that weathering,dissolution of carbonate,sulfate,salt rocks,and anthropogenic activities were the major contributors to ion content in the groundwater.The Water Quality Index(WQI)was calculated to assess the water quality of potable water.Approximately 50%of the sampled sites exhibited good water quality.However,the study highlights significant NO_(3)contamination in the study area,with 50%of samples exceeding permissible limits.Therefore,effective treatment measures are crucial for the safe consumption of groundwater.展开更多
The purpose of this study is to investigate the effect of using Bicarbonate and Calcium parameters as alternatives to the lithostratigraphic units covered the catchment area, on water quality index (WQI) values that h...The purpose of this study is to investigate the effect of using Bicarbonate and Calcium parameters as alternatives to the lithostratigraphic units covered the catchment area, on water quality index (WQI) values that have been implemented with GIS technique at Wadi Al-Arab Dam. The analyzed results (by WQI method) have been used to depict water quality for the two approaches. Based on physico-chemical parameters, the calculated values for WQI over the 3-year for study period were 169, 168, and 157, respectively. While the WQI values were 184, 183 and 172, respectively, as a result of incorporated Bicarbonate and Calcium parameters in WQI calculations that significantly contributed to increasing the WQI. The elevated values may be attributed to the influence of carbonate stone dissolution and mechanical erosion under weathering conditions that are prevalent during winter season in the catchment area. As a consequence of lithostratigraphic unites product and GIS technique integration and normalization processes, most of water quality ranks are good and only autumn season has poor water quality in the 2012 and 2013, while in 2014 it has good water quality in the same season. The WQI values increase in general trend from winter to autumn seasons during the study period that may be referred to outflow by daily consumption, evaporation rising, and seepage water. The analysis shows that the modified water quality values of the Wadi Al-Arab Dam Reservoir (WADR) vary after using Bicarbonate and Calcium parameters by constant value. Generally, the results signify that the WADR is not polluted based on the physical and chemical characteristics of water.展开更多
This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port H...This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port Harcourt metropolis as a result of the proliferation of petrol service stations especially the condition of ground and nearby surface water. This serves as a useful tool to government and regulatory authorities for planning especially due to lack of central water supply system in Port Harcourt metropolis. The parameters studied were sampled, measured and analyzed using in situ and other standard methods. Remarkable results above permissible limits of interest for physicochemical parameter analysis revealed pH values from 4.6 to 6.8, electrical conductivity from 0.002 µS/cm to 0.42 µS/cm, salinity from 3 ppm to 4050 ppm, and temperatures from 19.9˚C to 32.6˚C. Total dissolved solids (TDS) varied from 7 ppm to 1000 ppm, biochemical oxygen demand (BOD) from 0.167 mg/L to 2.167 mg/L, chemical oxygen demand (COD) from 0.257 mg/L to 3.253 mg/L, and dissolved oxygen (DO) concentrations from 1.70 mg/L to 4.30 mg/L. Specifically, water samples from NNPC Filling Station (Choba) and Eneka Pond displayed “Poor” water quality with WQI values of 112.003 and 112.076, respectively. Similarly, ALLTEC Filling Station (Eneka) and TOTAL Filling Station (Rumuomasi) had “Poor” water quality with WQI values of 173.707 and 180.946, respectively. In contrast, Excelsis Filling Station (Akpajo) demonstrated “Good” water quality with a WQI of 85.2072, while Total Filling Stations (Slaughter) and Choba River revealed “unsuitable for drinking” water quality with WQI values of 552.461 and 654.601, respectively. Slaughter River also indicated very poor water quality with a WQI of 442.024. The physicochemical and nutrient analyses of the water samples showed that activities of the filling stations within the study area may have polluted groundwater in the environment posing poor aesthetics and great health risk to consumers of the water bodies. The findings underscore the need for immediate remediation efforts and stricter regulatory measures to protect water quality. The study concluded that surface and groundwater near petrol service stations in Port Harcourt are unfit for drinking and irrigation purposes without adequate treatment.展开更多
Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments re...Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments relies heavily on water quality management. This assessment was done to determine the water quality of ten artificial fishponds in the south-eastern part of Sierra Leone using twelve physicochemical factors (pH, BOD, EC, TDS, turbidity, COD, Fe<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, NH<sub>3</sub>, , and alkalinity) to find out the Water Quality Index (WQI) and spatial distribution of respective parameters. The assessment of artificial fishponds using WQI and Inverse Distant Weighting (IDW) integration represents a relatively underexplored area within the domain of environmental water resources. The WQI was determined using the “Weighted Arithmetic Water Quality Index’’ method. The results of WQI in the study area range from 65.05 to 147.26. Several locations have water quality deemed unsuitable for consumption, while others range from good to very poor. It is essential to address and improve water quality in locations categorized as unsuitable for consumption and very poor to ensure safe and healthy water sources. It was also clear from the calculation that the smaller the mean concentration value of the pH as compared to the ideal value (7), the smaller the WQI value and the better the water quality. To keep the artificial fishpond water in good condition, mass domestic use should be controlled, and draining of surrounding organic matter should be stopped in ponds Bo_001, Kenema_001, and Kenema_002.展开更多
The present study deals with the Water Quality Index (WQI) and absorption of zinc from electroplating industry effluent using ftmgi. The physico-chemical parameters such as EC (Electrical Conductivity), TDS (Tota...The present study deals with the Water Quality Index (WQI) and absorption of zinc from electroplating industry effluent using ftmgi. The physico-chemical parameters such as EC (Electrical Conductivity), TDS (Total Dissolved Solids), total hardness, magnesium, calcium, chloride, sodium, potassium, nickel, chromium and zinc content was above the permissible limits of BIS (Bureau of Indian Standards). The WQI was 13, which showed that the pollution level of the electroplating industry effluent was severe in the rating scale and the effluent was not suitable for disposal without treatment. Three fungal species such as Aspergillus niger, Peinicillium chrysogenum and Rhizopus nigricans were used for absorption studies. Different concentrations (25, 50, 75 and 100%) of electroplating industry effluent along with 1 gm of fungal mycelium with (1%) and without carbon source was incubated in a shaker for a period of 7 days in order to observe zinc absorption capacity. The absorption capacity of zinc was found to be higher in Aspergillus niger followed by Rhizopus nigricans and Penicillium chrysogenum. Among the three fungal species Aspergillus niger had high (50%) potential of zinc absorption with carbon source and low concentration (25%) of electroplating industry effluent.展开更多
Sagardari union is facing groundwater crisis because of contaminations from agriculture and urban sewage,which bring a considerable change in water quality.In view of this,hydro-chemical analyses were undertaken on 35...Sagardari union is facing groundwater crisis because of contaminations from agriculture and urban sewage,which bring a considerable change in water quality.In view of this,hydro-chemical analyses were undertaken on 35 groundwater samples and the following hydro-geochemical parameters,pH,total dissolved solids(TDS),total hardness(TH),electrical conductivity(EC),cations and anions,were analyzed.From the analytical results,it is found that pH value was lower than WHO drinking water standard and the middledownstream portions of the investigation region show higher EC.The piper plot indicates that the groundwater in Sagardari falls in the categories of NaClHCO3 hydro-chemical facies.Higher TH in groundwater was detected,but still in an acceptable range.In addition,salinity and arsenic ratio are higher and moderately higher,respectively.The spatial distribution of Groundwater Quality Index(GWQI)was determined by geo-statistical modelling of Sagardari union.The study provides information and supports the administration which to make better groundwater utilization and quality control in the Sagardari union.展开更多
Water is the most essential requirement for life. It provides a variety of purposes such as a source of water supply for drinking, domestic and industrial use, irrigated agriculture, livestock, and mining activities. ...Water is the most essential requirement for life. It provides a variety of purposes such as a source of water supply for drinking, domestic and industrial use, irrigated agriculture, livestock, and mining activities. Evaluating the status of water quality from traditional approaches does not guarantee the whole overview of the water quality situation. Therefore, developing a tool that can convert multiple parameters data into information that is understandable by both technical and non-technical personnel is vital. In this context, the purpose of this paper was to develop, calculate, and apply a water quality index for assessing the suitability (for drinking purposes) of groundwater in the gold mining areas in south-eastern Senegal. The development of this index based on WHO water quality guidelines followed the five standards steps i.e., parameters selection, sub-index formation, parameters weighting and sub-index aggregation and evaluation. Finally, the WQI summarized twelve key water quality parameters into 05 simple terms (excellent, good, medium, poor, and very poor) which is more relevant for reporting to managers and the public in a consistent manner. Thus, it was observed in the study area, that the water quality indexes in artisanal and industrial mining areas are either poor or very poor while in the reference stations (where there are no mining activities) WQI are either good or excellent. This situation was attributed to the effects of mining activities in such zones which contribute to the pollution of groundwater with heavy metals, nitrates, and suspended solids.展开更多
Nowadays the human activity has increased the pressure on surface water quality. The purpose of this study is to assess the environmental quality of the Seman River water (in Southern part of Albania) through a 5-year...Nowadays the human activity has increased the pressure on surface water quality. The purpose of this study is to assess the environmental quality of the Seman River water (in Southern part of Albania) through a 5-year monitoring program of 14 parameters (pH, DO, EC, TSS, Cl<sup>-</sup>, <span style="white-space:nowrap;">NO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span>, Total-N, Total-P, BOD<sub>5</sub>, Cu<sup>2+</sup>, Ni<sup>2+</sup>, Pb<sup>2+</sup>, Cd<sup>2+</sup> and Temp. <span style="white-space:nowrap;">°</span>C), that determine the environmental status of this waterbody, as well as the application of WQI (CCME) through a multivariable approach. Based on the cluster dendogram results, it can be concluded that during wet seasons such as winter-spring, there are more sediments which influence other physic-chemical parameters, while during dry seasons (summer-autumn) there are more decomposition reactions of elements released by sediments and influenced by temperature. PCA analysis determines whether the groups of factors correlate strongly or not, depending on the internal structures of the groups and variables “heavy” or latent and vary from season to season with differentiated contributions to the water quality. All three factors influence WQI to the extent of 56% in the summer and spring season and 64% and 40% in the autumn and winter season, respectively.展开更多
River water is still a major source of drinking water for major part of population. Sangamner city is using the River water for drinking, domestic and industrial purpose. At the same time the waste generated is discha...River water is still a major source of drinking water for major part of population. Sangamner city is using the River water for drinking, domestic and industrial purpose. At the same time the waste generated is discharged into the River without or with partial treatment. So in present investigation the River water quality was analyzed for the parameters like pH, Electrical Conductivity, Total Dissolved Solids, Total Hardness, Calcium, Magnesium, Alkalinity, Chloride, Dissolved Oxygen, Chemical Oxygen Demand, Biological Oxygen Demand. Sodium, Potassium, Sulphate, Phosphate and Nitrate. The water quality index for drinking purpose was calculated using same data. The grading system was used to assess the water quality index. The result indicates that the poor water quality at four sites ranging from 250 to 745. Only site 1 shows good water quality which is 36.08 which lies in grade B.展开更多
The present work is aimed at assessing the water quality index (WQI) for the groundwater for Gulbarga city. The water quality index (WQI) is a mathematical instrument used to transform large quantities of water qu...The present work is aimed at assessing the water quality index (WQI) for the groundwater for Gulbarga city. The water quality index (WQI) is a mathematical instrument used to transform large quantities of water quality data into a single number which represents the water quality level. In fact, developing WQI in an area is a fundamental process in the planning of land use and water resources management. One can then compare different samples for quality on the basis of the index value of each sample. The present work relates to the development of water quality index for the study area based on the experimental results of physicochemical analysis of water samples. For calculating the WQI, the following 11 parameters have been considered, pH, TH, Ca, Mg, NO3, SO4, TDS, F, CI, K and Na. The WQI for these samples ranges from 10.40 to 155. Using developed indices, groundwater isopleth map has been prepared for study area. In the case study, the WQI map reveals that groundwater quality in two areas is extremely near to mineral water quality. Created index map provides a comprehensive picture that is easily interpretable for regional decision makers for better planning and management. The results of analysis have been used to suggest models for predicting water quality. The analysis reveals that the groundwater of the area needs some degree of treatment before consumption, and it also needs to be protected from the perils of contamination.展开更多
Southern Bangladesh's irrigation and drinking water is threatened by saline intrusion. This study aimed to establish an irrigation water quality index (IWQI) using a geostatistical model and multivariate indices in...Southern Bangladesh's irrigation and drinking water is threatened by saline intrusion. This study aimed to establish an irrigation water quality index (IWQI) using a geostatistical model and multivariate indices in Gopalganj district, south-central Bangladesh. Groundwater samples were taken randomly (different depths) in two seasons (wet-monsoon and dry-monsoon). Hydrochemical analysis revealed groundwater in this area was neutral to slightly alkaline and dominating cations were Na^+, Mg^2+, and Ca^2+ along with major anions Cl^- and HCO3^-. Principal component analysis and Gibbs plot helped explain possible geochemical processes in the aquifer. The irrigation water evaluation indices showed: electrical conductivity (EC) 〉750 μS/cm, moderate to extreme saline; sodium adsorption ratio (SAR), excellent to doubtful; total hardness (TH), moderate to very hard; residual sodium bicarbonate, safe to marginal; Kelly's ratio 〉1; soluble sodium percentage (SSP), fair to poor; magnesium adsorption ratio, harmful for soil; and IWQI, moderate to suitable. In addition, the best fitted semivariogram for IWQI, EC, SAR, SSP, and TH confirmed that most parameters had strong spatial dependence and others had moderate to weak spatial dependence. This variation might be due to the different origin/sources of major contributing ions along with the influence of variable river flow and small anthropogenic contributions. Furthermore, the spatial distribution maps for IWQI, EC, SSP, and TH during both seasons confirmed the influence of salinity from the sea; low-flow in the major river system was the driving factor of overall groundwater quality in the study area. These findings may contribute to management of irrigation and/or drinking water in regions with similar groundwater problems.展开更多
This paper aims to turn complex groundwater data into comprehensible information by indexing the different factors numerically comparative to the standards of World Health Organization (WHO) to produce Water Quality I...This paper aims to turn complex groundwater data into comprehensible information by indexing the different factors numerically comparative to the standards of World Health Organization (WHO) to produce Water Quality Index (WQI). Water Quality Index (WQI) has been used to assess groundwater quality and Geographic Information Systems (GIS) has been used to create maps representing the spatial distribution of groundwater categories in Assiut governorate, Egypt. Water Quality Index has been computed by Un-weighted Arithmetic Water Quality Index (WQIUA) method and applied on 796 wells over eight years from 2006 to 2013. The results showed that WQIUA values for drinking purposes were high and most of them reached higher or close to 100, which indicated that the groundwater was polluted and unsafe for drinking. On the other hand, the quality index of groundwater for irrigation purposes in most of the study area ranges between 55.78 and 78.38 (poor and very poor category);this means that groundwater is moderately polluted and rather suitable for irrigation.展开更多
For the Pinang River, originating in the western highlands of Penang Island, the nature, sources and extent of pollution were studied. The river water samples collected at five selected sites were analyzed for various...For the Pinang River, originating in the western highlands of Penang Island, the nature, sources and extent of pollution were studied. The river water samples collected at five selected sites were analyzed for various physical and chemical parameters, namely temperature, DO, BOD, COD, SS, pH, ammoniac nitrogen (AN), and conductance, Long-term data of rainfall and temperature were analyzed to determine the seasonal variations of the streamflow. The streamflow during the dry season is extremely low compared to the wet season, thus concentrations of contaminants derived from point pollution source increase due to lack of rainfall and runoff events. On the contrary, in the predominantly urban and agricultural catchments, non-point pollution source increases during rainy season through seepage and runoff. Effects of seasonal variations consequently determine the quantity and quality of the water parameters. The Jelutong River, the Dondang River and the Air Itam River carry the seepage from widely urban and residential areas to the main Pinang River systems. Water quality of the Pinang River at different points assessed by the water quality indices was compared. According to the quality indices during the study period, water quality in the upper reaches of the river is medium to good. It dwindled in the plains, due to the seepage from urban areas and discharges from the industrial and agricultural lands.展开更多
Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy s...Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy social and political demands through the construction of dams and irrigation systems. The reduction in freshwater quantity and the deterioration of water quality are the outcome of industrial inflows, agriculture and urban untreated wastewater. This study has been leaded to determine hydrological, water quality, seed bioassays and the lake fisheries' decreases throughout its historical tendencies (1980-2004) in relation to changes in water levels. Hydrological data and water samples for chemical analysis, inorganic nutrients and seed bioassay, were taken from 10 sites alongside the river and two sites from Lake Chapala in years 2005 and 2009, the WQINsF (National Sanitation Foundation Water Quality Index) was estimated. The dissolved oxygen along the river was from anoxic (0.4) to 7 mg/L and the lake had 6.75 mg/L to 7.36 mg/L; the river had highest nutrients variations, Ntot and Ptot 1 mg/L to 〉 10 mg/L. The lake had few physicochemical variations and the lowest nutrient concentrations; WQINsF (water quality index) in the river-lake system showed very bad-bad quality and contamination in river, bad quality-light contamination in lake. Seed bioassays showed inhibition of root elongation and declining fisheries when low water levels were presented. Chapala Lake had better physicochemical and limnological conditions because of the wind action and water column mixing; in contrast the river, high hidrological variations caused by water administration in middle basin.展开更多
The aim of the present study is to assess the water quality along the Rosetta branch of the Nile River, Egypt. The study area extends from upstream of the EI-Rahawy drain to the end of the branch. The correlation matr...The aim of the present study is to assess the water quality along the Rosetta branch of the Nile River, Egypt. The study area extends from upstream of the EI-Rahawy drain to the end of the branch. The correlation matrix was performed to help identify the nature of correlations between the different parameters. The WQI (water quality index) was calculated seasonally at different points along the Rosetta branch to provide a simple indicator of water quality at these points. The results of WQI calculations showed that the fecal coliform is the main cause of poor water quality along the Rosetta branch. A statistical analysis was also performed using a two-way ANOVA (analysis of variance) to identify the significant sources of water pollution and to determine the impact of the parameters on a mass loading. A significant difference was observed between the impacts of the pollution sources on the water quality. Also, a significant difference was observed between the impacts of each parameter in the mass loading. The results showed that the E1-Rahawy, Tala and Sabal drains are the major sources for water quality degradation along the Rosetta branch and that the effect of the EI-Tahrir and the Zawyet El-Baher drains on the water quality is not significant.展开更多
Geothermal water can have a wide range of direct applications,including drinking,domestic use,irrigation and industrial use.This study analyses geothermal water from Dholera,Diu,Gandhar,Kutch,Porbandar,Tulsishyam,and ...Geothermal water can have a wide range of direct applications,including drinking,domestic use,irrigation and industrial use.This study analyses geothermal water from Dholera,Diu,Gandhar,Kutch,Porbandar,Tulsishyam,and Unai regions located in Gujarat,India,to determine the hydrochemistry for establishing the water's suitability for drinking and irrigation purposes.From each region,three different water samples were collected.For drinking purpose,total eleven water quality parameters such as pH,electrical conductivity,total dissolved solids,calcium,magnesium,sodium,potassium,chloride,sulphate,carbonate and bicarbonate were evaluated.Piper and Durov plots were used to understand the ionic composition and evolution of water.Whereas for irrigation,the parameters such as total dissolved solids,sodium absorption ration,electrical conductivity,and potential salinity were used for water quality check.Wilcox Plot was plotted to understand the sodium and salinity hazard of water.Water quality index and irrigation water quality index were used to assess the water quality for making the analytical procedure easy.The findings indicate that the water samples from the Dholera and Diu areas had extremely high values for both the water quality index and total dissolved solids content.Water in these places may be appropriate for making salt.All the other samples show adequacy for utilization in irrigation purpose.展开更多
The Upper Chongwe River Catchment has recently been overexploited for water resources with increased complaints by various water users about the deteriorating quality of surface water within the sub-catchment. This st...The Upper Chongwe River Catchment has recently been overexploited for water resources with increased complaints by various water users about the deteriorating quality of surface water within the sub-catchment. This study was motivated by the need to investigate and understand the response of surface water quality to land use land cover (LULC) change due to urbanization. Water samples, collected at 9 sampling sites from 2006 to 2017, were analyzed for water quality using the weighted arithmetic water quality index and trend using the Mann-Kendall statistics. LULC change is detected and analyzed in ERDAS Imagine 2014 and ArcGIS 10.4 using 2006 Landsat 5 TM and 2017 Landsat 8 OLI imageries. The relationship between LULC change and water quality was performed with multiple regression analysis and Pearson correlation. The results reveal that Built-up area, Grassland and surface water increased by 5.48%, 13.34% and 0.03% respectively while Agricultural land and Forest Land decreased by <span style="white-space:nowrap;">−</span>13.41% and <span style="white-space:nowrap;">−</span>5.42% respectively. The water quality index ranged from 43.04 to 110.40 in 2006 and from 170 to 430 in 2017 indicating a deterioration in the quality of surface water from good to unsuitable for drinking at all the sampled sites. Built-up/bare lands exhibited a significant positive correlation with EC (<em>R<sup>2</sup></em> = 0.61, p ≤ 0.05), turbidity (<em>R<sup>2</sup></em><sup> </sup>= 0.69, p ≤ 0.05), TDS (<em>R<sup>2</sup></em> = 0.61, p ≤ 0.05), Cl (<em>R<sup>2</sup></em> = 0.62, p ≤ 0.05) and a significant negative correlation with NH<sub>4</sub> (<em>R<sup>2</sup></em> = <span style="white-space:nowrap;">−</span>0.729, p ≤ 0.05). Agriculture exhibited a significant positive correlation with turbidity (<em>R<sup>2</sup></em> = 0.71, p ≤ 0.01) and Fe (<em>R<sup>2</sup></em> = 0.75, p ≤ 0.01. Forest cover correlated negatively with most of the water quality parameters apart from Fe, DO, NO<sub>3</sub> but was not statistically significant. Grassland had a significant negative correlation with temperature (<em>R<sup>2</sup></em> = <span style="white-space:nowrap;">−</span>0.68, p ≤ 0.05). Clearly, urbanization has made a disproportionately strong contribution to the deterioration of surface water quality indicating that intensive anthropogenic activities exacerbate water quality degradation. These results provide essential information for land use planners and water managers towards sustainable and equitable management of limited water resources.展开更多
文摘The world’s lakes are in the process of degradation, with loss of water quality as a result of anthropic influences. This research aimed to evaluate water quality in high-pressure Peruvian anthropic sectors of Lake Titicaca using a calibrated index. The study considered ten important bays with influence from urban sectors. In each bay, surface waters were monitored for six years, considering physical, chemical and microbiological parameters. Water quality was assessed using the NSF Water Quality Index (NSF-WQI) and the one calibrated for Lake Titicaca (WQIT). Comparing the efficiency of these two indices, the WQIT showed a variation from moderately polluted bays to bad quality bays, such as Desaguadero and Yunguyo. These two bays were classified as hypereutrophic, therefore, the uses attributable to this condition are only irrigation and energy production. Applying the NSF-WQI, the results were not able to identify this significative difference, as all bays were classified as moderate quality waters. This result indicates that the WQIT calibration was adequate, as it allows inferring and estimating the water quality of Lake Titicaca with greater precision. According to Peru’s water quality standard for category 4, established for the conservation of the country’s lakes, the parameters that exceeded the standard values were PO4-P (0.035 mg∙L−1) and BOD5 (5 mg∙L−1) in all bays, and TC (1000 MPN mL−1) in Yunguyo bay. These high values indicate eutrophication processes, one of the main problems in the study area. The WQIT calibrated for Lake Titicaca can be used as an efficient tool to assess water quality in high Andean lentic waterbodies in South America.
基金funding from the European Union’s Horizon 2020 Research&Innovation Programme(2211)under the Partnership for Research and Innovation in the Mediterranean Area(PRIMA)Project"SHARInG-MeD"from the Directorate-General for Scientific Research and Technological Development(DGRSDT)under the Projets de Recherche Formation-Universitaire(PRFU)Projects(D00L02UN120120230002,D01N01UN120120230005)。
文摘Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water.
基金supported by the National Natural Science Foundation of China(Grant No.31670473)the Wuhan Institute of Technology funding to Dr.Siyue Li(Grant No.21QD02).
文摘Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.
文摘This study investigates the hydrochemical formation mechanism of shallow groundwater in the Upper Kebir upstream sub-basin(Northeastern Algeria).The objective is to evaluate water quality suitability for domestic purposes through the application of water quality index(WQI).A total of 24 water points(wells and borewells)evenly distributed in the basin were collected and analyzed in the laboratory for determining the major ions and other geochemical parameters in the groundwater.The groundwater hydrochemical types were identified as Cl–Na and Cl–HCO_(3)^(–)Na,with the dominant major ions were found in the order of Na^(+)>Ca^(2+)>Mg^(2+)for cations,and Cl^(−)>SO_(4)^(2−)>HCO_(3)^(–)>NO_(3)^(−)for anions.Results suggest that weathering,dissolution of carbonate,sulfate,salt rocks,and anthropogenic activities were the major contributors to ion content in the groundwater.The Water Quality Index(WQI)was calculated to assess the water quality of potable water.Approximately 50%of the sampled sites exhibited good water quality.However,the study highlights significant NO_(3)contamination in the study area,with 50%of samples exceeding permissible limits.Therefore,effective treatment measures are crucial for the safe consumption of groundwater.
文摘The purpose of this study is to investigate the effect of using Bicarbonate and Calcium parameters as alternatives to the lithostratigraphic units covered the catchment area, on water quality index (WQI) values that have been implemented with GIS technique at Wadi Al-Arab Dam. The analyzed results (by WQI method) have been used to depict water quality for the two approaches. Based on physico-chemical parameters, the calculated values for WQI over the 3-year for study period were 169, 168, and 157, respectively. While the WQI values were 184, 183 and 172, respectively, as a result of incorporated Bicarbonate and Calcium parameters in WQI calculations that significantly contributed to increasing the WQI. The elevated values may be attributed to the influence of carbonate stone dissolution and mechanical erosion under weathering conditions that are prevalent during winter season in the catchment area. As a consequence of lithostratigraphic unites product and GIS technique integration and normalization processes, most of water quality ranks are good and only autumn season has poor water quality in the 2012 and 2013, while in 2014 it has good water quality in the same season. The WQI values increase in general trend from winter to autumn seasons during the study period that may be referred to outflow by daily consumption, evaporation rising, and seepage water. The analysis shows that the modified water quality values of the Wadi Al-Arab Dam Reservoir (WADR) vary after using Bicarbonate and Calcium parameters by constant value. Generally, the results signify that the WADR is not polluted based on the physical and chemical characteristics of water.
文摘This study assessed the impact of petrol service stations on physico-chemical water quality in Port Harcourt metropolis, Rivers State. This threw light on the extent of damage and alteration of water quality in Port Harcourt metropolis as a result of the proliferation of petrol service stations especially the condition of ground and nearby surface water. This serves as a useful tool to government and regulatory authorities for planning especially due to lack of central water supply system in Port Harcourt metropolis. The parameters studied were sampled, measured and analyzed using in situ and other standard methods. Remarkable results above permissible limits of interest for physicochemical parameter analysis revealed pH values from 4.6 to 6.8, electrical conductivity from 0.002 µS/cm to 0.42 µS/cm, salinity from 3 ppm to 4050 ppm, and temperatures from 19.9˚C to 32.6˚C. Total dissolved solids (TDS) varied from 7 ppm to 1000 ppm, biochemical oxygen demand (BOD) from 0.167 mg/L to 2.167 mg/L, chemical oxygen demand (COD) from 0.257 mg/L to 3.253 mg/L, and dissolved oxygen (DO) concentrations from 1.70 mg/L to 4.30 mg/L. Specifically, water samples from NNPC Filling Station (Choba) and Eneka Pond displayed “Poor” water quality with WQI values of 112.003 and 112.076, respectively. Similarly, ALLTEC Filling Station (Eneka) and TOTAL Filling Station (Rumuomasi) had “Poor” water quality with WQI values of 173.707 and 180.946, respectively. In contrast, Excelsis Filling Station (Akpajo) demonstrated “Good” water quality with a WQI of 85.2072, while Total Filling Stations (Slaughter) and Choba River revealed “unsuitable for drinking” water quality with WQI values of 552.461 and 654.601, respectively. Slaughter River also indicated very poor water quality with a WQI of 442.024. The physicochemical and nutrient analyses of the water samples showed that activities of the filling stations within the study area may have polluted groundwater in the environment posing poor aesthetics and great health risk to consumers of the water bodies. The findings underscore the need for immediate remediation efforts and stricter regulatory measures to protect water quality. The study concluded that surface and groundwater near petrol service stations in Port Harcourt are unfit for drinking and irrigation purposes without adequate treatment.
文摘Artificial fishponds play a pivotal role in global aquaculture, serving as a source of livelihood and nourishment for many communities. Ensuring the sustained health and productivity of Fishes in these environments relies heavily on water quality management. This assessment was done to determine the water quality of ten artificial fishponds in the south-eastern part of Sierra Leone using twelve physicochemical factors (pH, BOD, EC, TDS, turbidity, COD, Fe<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, NH<sub>3</sub>, , and alkalinity) to find out the Water Quality Index (WQI) and spatial distribution of respective parameters. The assessment of artificial fishponds using WQI and Inverse Distant Weighting (IDW) integration represents a relatively underexplored area within the domain of environmental water resources. The WQI was determined using the “Weighted Arithmetic Water Quality Index’’ method. The results of WQI in the study area range from 65.05 to 147.26. Several locations have water quality deemed unsuitable for consumption, while others range from good to very poor. It is essential to address and improve water quality in locations categorized as unsuitable for consumption and very poor to ensure safe and healthy water sources. It was also clear from the calculation that the smaller the mean concentration value of the pH as compared to the ideal value (7), the smaller the WQI value and the better the water quality. To keep the artificial fishpond water in good condition, mass domestic use should be controlled, and draining of surrounding organic matter should be stopped in ponds Bo_001, Kenema_001, and Kenema_002.
文摘The present study deals with the Water Quality Index (WQI) and absorption of zinc from electroplating industry effluent using ftmgi. The physico-chemical parameters such as EC (Electrical Conductivity), TDS (Total Dissolved Solids), total hardness, magnesium, calcium, chloride, sodium, potassium, nickel, chromium and zinc content was above the permissible limits of BIS (Bureau of Indian Standards). The WQI was 13, which showed that the pollution level of the electroplating industry effluent was severe in the rating scale and the effluent was not suitable for disposal without treatment. Three fungal species such as Aspergillus niger, Peinicillium chrysogenum and Rhizopus nigricans were used for absorption studies. Different concentrations (25, 50, 75 and 100%) of electroplating industry effluent along with 1 gm of fungal mycelium with (1%) and without carbon source was incubated in a shaker for a period of 7 days in order to observe zinc absorption capacity. The absorption capacity of zinc was found to be higher in Aspergillus niger followed by Rhizopus nigricans and Penicillium chrysogenum. Among the three fungal species Aspergillus niger had high (50%) potential of zinc absorption with carbon source and low concentration (25%) of electroplating industry effluent.
文摘Sagardari union is facing groundwater crisis because of contaminations from agriculture and urban sewage,which bring a considerable change in water quality.In view of this,hydro-chemical analyses were undertaken on 35 groundwater samples and the following hydro-geochemical parameters,pH,total dissolved solids(TDS),total hardness(TH),electrical conductivity(EC),cations and anions,were analyzed.From the analytical results,it is found that pH value was lower than WHO drinking water standard and the middledownstream portions of the investigation region show higher EC.The piper plot indicates that the groundwater in Sagardari falls in the categories of NaClHCO3 hydro-chemical facies.Higher TH in groundwater was detected,but still in an acceptable range.In addition,salinity and arsenic ratio are higher and moderately higher,respectively.The spatial distribution of Groundwater Quality Index(GWQI)was determined by geo-statistical modelling of Sagardari union.The study provides information and supports the administration which to make better groundwater utilization and quality control in the Sagardari union.
文摘Water is the most essential requirement for life. It provides a variety of purposes such as a source of water supply for drinking, domestic and industrial use, irrigated agriculture, livestock, and mining activities. Evaluating the status of water quality from traditional approaches does not guarantee the whole overview of the water quality situation. Therefore, developing a tool that can convert multiple parameters data into information that is understandable by both technical and non-technical personnel is vital. In this context, the purpose of this paper was to develop, calculate, and apply a water quality index for assessing the suitability (for drinking purposes) of groundwater in the gold mining areas in south-eastern Senegal. The development of this index based on WHO water quality guidelines followed the five standards steps i.e., parameters selection, sub-index formation, parameters weighting and sub-index aggregation and evaluation. Finally, the WQI summarized twelve key water quality parameters into 05 simple terms (excellent, good, medium, poor, and very poor) which is more relevant for reporting to managers and the public in a consistent manner. Thus, it was observed in the study area, that the water quality indexes in artisanal and industrial mining areas are either poor or very poor while in the reference stations (where there are no mining activities) WQI are either good or excellent. This situation was attributed to the effects of mining activities in such zones which contribute to the pollution of groundwater with heavy metals, nitrates, and suspended solids.
文摘Nowadays the human activity has increased the pressure on surface water quality. The purpose of this study is to assess the environmental quality of the Seman River water (in Southern part of Albania) through a 5-year monitoring program of 14 parameters (pH, DO, EC, TSS, Cl<sup>-</sup>, <span style="white-space:nowrap;">NO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span>, Total-N, Total-P, BOD<sub>5</sub>, Cu<sup>2+</sup>, Ni<sup>2+</sup>, Pb<sup>2+</sup>, Cd<sup>2+</sup> and Temp. <span style="white-space:nowrap;">°</span>C), that determine the environmental status of this waterbody, as well as the application of WQI (CCME) through a multivariable approach. Based on the cluster dendogram results, it can be concluded that during wet seasons such as winter-spring, there are more sediments which influence other physic-chemical parameters, while during dry seasons (summer-autumn) there are more decomposition reactions of elements released by sediments and influenced by temperature. PCA analysis determines whether the groups of factors correlate strongly or not, depending on the internal structures of the groups and variables “heavy” or latent and vary from season to season with differentiated contributions to the water quality. All three factors influence WQI to the extent of 56% in the summer and spring season and 64% and 40% in the autumn and winter season, respectively.
文摘River water is still a major source of drinking water for major part of population. Sangamner city is using the River water for drinking, domestic and industrial purpose. At the same time the waste generated is discharged into the River without or with partial treatment. So in present investigation the River water quality was analyzed for the parameters like pH, Electrical Conductivity, Total Dissolved Solids, Total Hardness, Calcium, Magnesium, Alkalinity, Chloride, Dissolved Oxygen, Chemical Oxygen Demand, Biological Oxygen Demand. Sodium, Potassium, Sulphate, Phosphate and Nitrate. The water quality index for drinking purpose was calculated using same data. The grading system was used to assess the water quality index. The result indicates that the poor water quality at four sites ranging from 250 to 745. Only site 1 shows good water quality which is 36.08 which lies in grade B.
文摘The present work is aimed at assessing the water quality index (WQI) for the groundwater for Gulbarga city. The water quality index (WQI) is a mathematical instrument used to transform large quantities of water quality data into a single number which represents the water quality level. In fact, developing WQI in an area is a fundamental process in the planning of land use and water resources management. One can then compare different samples for quality on the basis of the index value of each sample. The present work relates to the development of water quality index for the study area based on the experimental results of physicochemical analysis of water samples. For calculating the WQI, the following 11 parameters have been considered, pH, TH, Ca, Mg, NO3, SO4, TDS, F, CI, K and Na. The WQI for these samples ranges from 10.40 to 155. Using developed indices, groundwater isopleth map has been prepared for study area. In the case study, the WQI map reveals that groundwater quality in two areas is extremely near to mineral water quality. Created index map provides a comprehensive picture that is easily interpretable for regional decision makers for better planning and management. The results of analysis have been used to suggest models for predicting water quality. The analysis reveals that the groundwater of the area needs some degree of treatment before consumption, and it also needs to be protected from the perils of contamination.
基金supported by the project entitled ‘‘Establishment of monitoring network and mathematical model study to assess salinity intrusion in groundwater in the coastal area of Bangladesh due to climate change’’ implemented by Bangladesh Water Development Boardsponsored by Bangladesh Climate Change Trust Fund, Ministry of Environment and Forest
文摘Southern Bangladesh's irrigation and drinking water is threatened by saline intrusion. This study aimed to establish an irrigation water quality index (IWQI) using a geostatistical model and multivariate indices in Gopalganj district, south-central Bangladesh. Groundwater samples were taken randomly (different depths) in two seasons (wet-monsoon and dry-monsoon). Hydrochemical analysis revealed groundwater in this area was neutral to slightly alkaline and dominating cations were Na^+, Mg^2+, and Ca^2+ along with major anions Cl^- and HCO3^-. Principal component analysis and Gibbs plot helped explain possible geochemical processes in the aquifer. The irrigation water evaluation indices showed: electrical conductivity (EC) 〉750 μS/cm, moderate to extreme saline; sodium adsorption ratio (SAR), excellent to doubtful; total hardness (TH), moderate to very hard; residual sodium bicarbonate, safe to marginal; Kelly's ratio 〉1; soluble sodium percentage (SSP), fair to poor; magnesium adsorption ratio, harmful for soil; and IWQI, moderate to suitable. In addition, the best fitted semivariogram for IWQI, EC, SAR, SSP, and TH confirmed that most parameters had strong spatial dependence and others had moderate to weak spatial dependence. This variation might be due to the different origin/sources of major contributing ions along with the influence of variable river flow and small anthropogenic contributions. Furthermore, the spatial distribution maps for IWQI, EC, SSP, and TH during both seasons confirmed the influence of salinity from the sea; low-flow in the major river system was the driving factor of overall groundwater quality in the study area. These findings may contribute to management of irrigation and/or drinking water in regions with similar groundwater problems.
文摘This paper aims to turn complex groundwater data into comprehensible information by indexing the different factors numerically comparative to the standards of World Health Organization (WHO) to produce Water Quality Index (WQI). Water Quality Index (WQI) has been used to assess groundwater quality and Geographic Information Systems (GIS) has been used to create maps representing the spatial distribution of groundwater categories in Assiut governorate, Egypt. Water Quality Index has been computed by Un-weighted Arithmetic Water Quality Index (WQIUA) method and applied on 796 wells over eight years from 2006 to 2013. The results showed that WQIUA values for drinking purposes were high and most of them reached higher or close to 100, which indicated that the groundwater was polluted and unsafe for drinking. On the other hand, the quality index of groundwater for irrigation purposes in most of the study area ranges between 55.78 and 78.38 (poor and very poor category);this means that groundwater is moderately polluted and rather suitable for irrigation.
基金Under the auspices of the Public Service Department of Malaysia
文摘For the Pinang River, originating in the western highlands of Penang Island, the nature, sources and extent of pollution were studied. The river water samples collected at five selected sites were analyzed for various physical and chemical parameters, namely temperature, DO, BOD, COD, SS, pH, ammoniac nitrogen (AN), and conductance, Long-term data of rainfall and temperature were analyzed to determine the seasonal variations of the streamflow. The streamflow during the dry season is extremely low compared to the wet season, thus concentrations of contaminants derived from point pollution source increase due to lack of rainfall and runoff events. On the contrary, in the predominantly urban and agricultural catchments, non-point pollution source increases during rainy season through seepage and runoff. Effects of seasonal variations consequently determine the quantity and quality of the water parameters. The Jelutong River, the Dondang River and the Air Itam River carry the seepage from widely urban and residential areas to the main Pinang River systems. Water quality of the Pinang River at different points assessed by the water quality indices was compared. According to the quality indices during the study period, water quality in the upper reaches of the river is medium to good. It dwindled in the plains, due to the seepage from urban areas and discharges from the industrial and agricultural lands.
文摘Water overexploitation in the Lerma-Chapala Watershed, located in central Mexico, is linked to the development of a strong federal hydrocracy with the mission to capture as much water as possible in order to satisfy social and political demands through the construction of dams and irrigation systems. The reduction in freshwater quantity and the deterioration of water quality are the outcome of industrial inflows, agriculture and urban untreated wastewater. This study has been leaded to determine hydrological, water quality, seed bioassays and the lake fisheries' decreases throughout its historical tendencies (1980-2004) in relation to changes in water levels. Hydrological data and water samples for chemical analysis, inorganic nutrients and seed bioassay, were taken from 10 sites alongside the river and two sites from Lake Chapala in years 2005 and 2009, the WQINsF (National Sanitation Foundation Water Quality Index) was estimated. The dissolved oxygen along the river was from anoxic (0.4) to 7 mg/L and the lake had 6.75 mg/L to 7.36 mg/L; the river had highest nutrients variations, Ntot and Ptot 1 mg/L to 〉 10 mg/L. The lake had few physicochemical variations and the lowest nutrient concentrations; WQINsF (water quality index) in the river-lake system showed very bad-bad quality and contamination in river, bad quality-light contamination in lake. Seed bioassays showed inhibition of root elongation and declining fisheries when low water levels were presented. Chapala Lake had better physicochemical and limnological conditions because of the wind action and water column mixing; in contrast the river, high hidrological variations caused by water administration in middle basin.
文摘The aim of the present study is to assess the water quality along the Rosetta branch of the Nile River, Egypt. The study area extends from upstream of the EI-Rahawy drain to the end of the branch. The correlation matrix was performed to help identify the nature of correlations between the different parameters. The WQI (water quality index) was calculated seasonally at different points along the Rosetta branch to provide a simple indicator of water quality at these points. The results of WQI calculations showed that the fecal coliform is the main cause of poor water quality along the Rosetta branch. A statistical analysis was also performed using a two-way ANOVA (analysis of variance) to identify the significant sources of water pollution and to determine the impact of the parameters on a mass loading. A significant difference was observed between the impacts of the pollution sources on the water quality. Also, a significant difference was observed between the impacts of each parameter in the mass loading. The results showed that the E1-Rahawy, Tala and Sabal drains are the major sources for water quality degradation along the Rosetta branch and that the effect of the EI-Tahrir and the Zawyet El-Baher drains on the water quality is not significant.
文摘Geothermal water can have a wide range of direct applications,including drinking,domestic use,irrigation and industrial use.This study analyses geothermal water from Dholera,Diu,Gandhar,Kutch,Porbandar,Tulsishyam,and Unai regions located in Gujarat,India,to determine the hydrochemistry for establishing the water's suitability for drinking and irrigation purposes.From each region,three different water samples were collected.For drinking purpose,total eleven water quality parameters such as pH,electrical conductivity,total dissolved solids,calcium,magnesium,sodium,potassium,chloride,sulphate,carbonate and bicarbonate were evaluated.Piper and Durov plots were used to understand the ionic composition and evolution of water.Whereas for irrigation,the parameters such as total dissolved solids,sodium absorption ration,electrical conductivity,and potential salinity were used for water quality check.Wilcox Plot was plotted to understand the sodium and salinity hazard of water.Water quality index and irrigation water quality index were used to assess the water quality for making the analytical procedure easy.The findings indicate that the water samples from the Dholera and Diu areas had extremely high values for both the water quality index and total dissolved solids content.Water in these places may be appropriate for making salt.All the other samples show adequacy for utilization in irrigation purpose.
文摘The Upper Chongwe River Catchment has recently been overexploited for water resources with increased complaints by various water users about the deteriorating quality of surface water within the sub-catchment. This study was motivated by the need to investigate and understand the response of surface water quality to land use land cover (LULC) change due to urbanization. Water samples, collected at 9 sampling sites from 2006 to 2017, were analyzed for water quality using the weighted arithmetic water quality index and trend using the Mann-Kendall statistics. LULC change is detected and analyzed in ERDAS Imagine 2014 and ArcGIS 10.4 using 2006 Landsat 5 TM and 2017 Landsat 8 OLI imageries. The relationship between LULC change and water quality was performed with multiple regression analysis and Pearson correlation. The results reveal that Built-up area, Grassland and surface water increased by 5.48%, 13.34% and 0.03% respectively while Agricultural land and Forest Land decreased by <span style="white-space:nowrap;">−</span>13.41% and <span style="white-space:nowrap;">−</span>5.42% respectively. The water quality index ranged from 43.04 to 110.40 in 2006 and from 170 to 430 in 2017 indicating a deterioration in the quality of surface water from good to unsuitable for drinking at all the sampled sites. Built-up/bare lands exhibited a significant positive correlation with EC (<em>R<sup>2</sup></em> = 0.61, p ≤ 0.05), turbidity (<em>R<sup>2</sup></em><sup> </sup>= 0.69, p ≤ 0.05), TDS (<em>R<sup>2</sup></em> = 0.61, p ≤ 0.05), Cl (<em>R<sup>2</sup></em> = 0.62, p ≤ 0.05) and a significant negative correlation with NH<sub>4</sub> (<em>R<sup>2</sup></em> = <span style="white-space:nowrap;">−</span>0.729, p ≤ 0.05). Agriculture exhibited a significant positive correlation with turbidity (<em>R<sup>2</sup></em> = 0.71, p ≤ 0.01) and Fe (<em>R<sup>2</sup></em> = 0.75, p ≤ 0.01. Forest cover correlated negatively with most of the water quality parameters apart from Fe, DO, NO<sub>3</sub> but was not statistically significant. Grassland had a significant negative correlation with temperature (<em>R<sup>2</sup></em> = <span style="white-space:nowrap;">−</span>0.68, p ≤ 0.05). Clearly, urbanization has made a disproportionately strong contribution to the deterioration of surface water quality indicating that intensive anthropogenic activities exacerbate water quality degradation. These results provide essential information for land use planners and water managers towards sustainable and equitable management of limited water resources.