期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Application of Time Serial Model in Water Quality Predicting
1
作者 Jiang Wu Jianjun Zhang +7 位作者 Wenwu Tan Hao Lan Sirao Zhang Ke Xiao Li Wang Haijun Lin Guang Sun Peng Guo 《Computers, Materials & Continua》 SCIE EI 2023年第1期67-82,共16页
Water resources are an indispensable and valuable resource for human survival and development.Water quality predicting plays an important role in the protection and development of water resources.It is difficult to pr... Water resources are an indispensable and valuable resource for human survival and development.Water quality predicting plays an important role in the protection and development of water resources.It is difficult to predictwater quality due to its random and trend changes.Therefore,amethod of predicting water quality which combines Auto Regressive Integrated Moving Average(ARIMA)and clusteringmodelwas proposed in this paper.By taking thewater qualitymonitoring data of a certain river basin as a sample,thewater quality Total Phosphorus(TP)index was selected as the prediction object.Firstly,the sample data was cleaned,stationary analyzed,and white noise analyzed.Secondly,the appropriate parameters were selected according to the Bayesian Information Criterion(BIC)principle,and the trend component characteristics were obtained by using ARIMA to conduct water quality predicting.Thirdly,the relationship between the precipitation and the TP index in themonitoring water field was analyzed by the K-means clusteringmethod,and the random incremental characteristics of precipitation on water quality changes were calculated.Finally,by combining with the trend component characteristics and the random incremental characteristics,the water quality prediction results were calculated.Compared with the ARIMA water quality prediction method,experiments showed that the proposed method has higher accuracy,and its Mean Absolute Error(MAE),Mean Square Error(MSE),and Mean Absolute Percentage Error(MAPE)were respectively reduced by 44.6%,56.8%,and 45.8%. 展开更多
关键词 ARIMA CLUSTER correlation analysis water quality predicting
下载PDF
Artificial Intelligence in Internet of Things System for Predicting Water Quality in Aquaculture Fishponds
2
作者 Po-Yuan Yang Yu-Cheng Liao Fu-I Chou 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2861-2880,共20页
Aquaculture has long been a critical economic sector in Taiwan.Since a key factor in aquaculture production efficiency is water quality,an effective means of monitoring the dissolved oxygen content(DOC)of aquaculture ... Aquaculture has long been a critical economic sector in Taiwan.Since a key factor in aquaculture production efficiency is water quality,an effective means of monitoring the dissolved oxygen content(DOC)of aquaculture water is essential.This study developed an internet of things system for monitoring DOC by collecting essential data related to water quality.Artificial intelligence technology was used to construct a water quality prediction model for use in a complete system for managing water quality.Since aquaculture water quality depends on a continuous interaction among multiple factors,and the current state is correlated with the previous state,a model with time series is required.Therefore,this study used recurrent neural networks(RNNs)with sequential characteristics.Commonly used RNNs such as long short-term memory model and gated recurrent unit(GRU)model have a memory function that appropriately retains previous results for use in processing current results.To construct a suitable RNN model,this study used Taguchi method to optimize hyperparameters(including hidden layer neuron count,iteration count,batch size,learning rate,and dropout ratio).Additionally,optimization performance was also compared between 5-layer and 7-layer network architectures.The experimental results revealed that the 7-layer GRU was more suitable for the application considered in this study.The values obtained in tests of prediction performance were mean absolute percentage error of 3.7134%,root mean square error of 0.0638,and R-value of 0.9984.Therefore,thewater qualitymanagement system developed in this study can quickly provide practitioners with highly accurate data,which is essential for a timely response to water quality issues.This study was performed in collaboration with the Taiwan Industrial Technology Research Institute and a local fishery company.Practical application of the system by the fishery company confirmed that the monitoring system is effective in improving the survival rate of farmed fish by providing data needed to maintain DOC higher than the standard value. 展开更多
关键词 FISHERY gated recurrent unit hyperparameter optimization long short-term memory Taguchi method water quality prediction
下载PDF
Correlation Analysis of Turbidity and Total Phosphorus in Water Quality Monitoring Data
3
作者 Wenwu Tan Jianjun Zhang +7 位作者 Xing Liu Jiang Wu Yifu Sheng Ke Xiao Li Wang Haijun Lin Guang Sun Peng Guo 《Journal on Big Data》 2023年第1期85-97,共13页
At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the p... At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the prediction of total phosphorus in water quality has good research significance.This paper selects the total phosphorus and turbidity data for analysis by crawling the data of the water quality monitoring platform.By constructing the attribute object mapping relationship,the correlation between the two indicators was analyzed and used to predict the future data.Firstly,the monthly mean and daily mean concentrations of total phosphorus and turbidity outliers were calculated after cleaning,and the correlation between them was analyzed.Secondly,the correlation coefficients of different times and frequencies were used to predict the values for the next five days,and the data trend was predicted by python visualization.Finally,the real value was compared with the predicted value data,and the results showed that the correlation between total phosphorus and turbidity was useful in predicting the water quality. 展开更多
关键词 Correlation analysis CLUSTER water quality predict water quality monitoring data
下载PDF
Application of a Neural Network Technique for Prediction of the Water Quality Index in the Dong Nai River, Vietnam 被引量:4
4
作者 Nguyen Hien Than Che Dinh Ly +1 位作者 Pham Van Tat Nguyen Ngoc Thanh 《Journal of Environmental Science and Engineering(B)》 2016年第7期363-370,共8页
Recent trends in environmental management of water resource have enlarged the demand for predicting techniques that can provide reliable, efficient and accurate water quality. In this case study, the authors applied t... Recent trends in environmental management of water resource have enlarged the demand for predicting techniques that can provide reliable, efficient and accurate water quality. In this case study, the authors applied the Artificial Neural Networks (ANN) to estimate the water quality index on the Dong Nai River flowing through Dong Nai and Binh Duong provinces. The information and data including 10 water quality parameters of the Dong Nai River at 23 monitoring stations were collected during the recorded time period from 2010 to 2014 to build water quality prediction models. The results of the study demonstrated that the Water Quality Index (WQI) forecasted with GRNN was very significant and had high correlation coefficient (R2 = 0.974 and p = 0.0) compared to the real values of the WQI. Moreover, the ANN models provided better predicted values than the multiple regression models did. 展开更多
关键词 Artificial Neural Networks water quality forecast water quality prediction.
下载PDF
Development and application of a GIS-based artificial neural network system for water quality prediction: a case study at the Lake Champlain area 被引量:1
5
作者 LU Fang ZHANG Haoqing LIU Wenquan 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第6期1835-1845,共11页
Artificial Neural Network(ANN)models have been extensively applied in the prediction of water resource variables,and Geographical Information System(GIS)includes powerful functions to visualize spatial data.In order t... Artificial Neural Network(ANN)models have been extensively applied in the prediction of water resource variables,and Geographical Information System(GIS)includes powerful functions to visualize spatial data.In order to provide an efficient tool for environmental assessment and management that combines the advantages of these two modules,a GIS-based ANN water quality prediction system was developed in the present study.The ANN module and ArcGIS Engine module,along with a dynamic database,were imbedded in the system,which integrates water quality prediction via the ANN model and spatial presentation of the model results.The structure of the ANN model could be modified through the graphical user interface to optimize the model performance.The developed system was applied to a real case study for the prediction of the total phosphorus concentration in the Lake Champlain area.The prediction results were verified with the monitoring data,and the performance of the developed model was further evaluated through graphical techniques and quantitative statistical methods.Overall,the developed system provided satisfactory prediction results,and spatial distribution maps of the predicted results were obtained,which coincided with the monitored values.The developed GIS-based ANN water quality prediction system could serve as an efficient tool for engineers and decision makers. 展开更多
关键词 water quality prediction Geographical Information System(GIS) artificial neural network INTEGRATION system development
下载PDF
Combined Method of Chaotic Theory and Neural Networks for Water Quality Prediction
6
作者 ZHANG Shudong LI Weiguang +2 位作者 NAN Jun WANG Guangzhi ZHAO Lina 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第1期71-76,共6页
Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the... Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the phase space reconstruction, the one-dimensional water quality time series were mapped to be multi-dimensional sequence, which enriched the spatial information of water quality change and expanded mapping region of training samples of BP neural network. Established model of combining chaos theory and BP neural network were applied to forecast turbidity time series of a certain reservoir. Contrast to BP neural network method, the relative error and the mean squared error of the combined method had all varying degrees of lower. Results indicated the neural network model with chaos theory had the higher prediction accuracy, at the same time, it had better fault-tolerant capability and generalization performance . 展开更多
关键词 water quality prediction BP neural network chaotic time series
下载PDF
A benchmark-based method for evaluating hyperparameter optimization techniques of neural networks for surface water quality prediction
7
作者 Xuan Wang Yan Dong +2 位作者 Jing Yang Zhipeng Liu Jinsuo Lu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第5期13-27,共15页
Neural networks(NNs)have been used extensively in surface water prediction tasks due to computing algorithm improvements and data accumulation.An essential step in developing an NN is the hyperparameter selection.In p... Neural networks(NNs)have been used extensively in surface water prediction tasks due to computing algorithm improvements and data accumulation.An essential step in developing an NN is the hyperparameter selection.In practice,it is common to manually determine hyperparameters in the studies of NNs in water resources tasks.This may result in considerable randomness and require significant computation time;therefore,hyperparameter optimization(HPO)is essential.This study adopted five representatives of the HPO techniques in the surface water quality prediction tasks,including the grid sampling(GS),random search(RS),genetic algorithm(GA),Bayesian optimization(BO)based on the Gaussian process(GP),and the tree Parzen estimator(TPE).For the evaluation of these techniques,this study proposed a method:first,the optimal hyperparameter value sets achieved by GS were regarded as the benchmark;then,the other HPO techniques were evaluated and compared with the benchmark in convergence,optimization orientation,and consistency of the optimized values.The results indicated that the TPE-based BO algorithm was recommended because it yielded stable convergence,reasonable optimization orientation,and the highest consistency rates with the benchmark values.The optimization consistency rates via TPE for the hyperparameters hidden layers,hidden dimension,learning rate,and batch size were 86.7%,73.3%,73.3%,and 80.0%,respectively.Unlike the evaluation of HPO techniques directly based on the prediction performance of the optimized NN in a single HPO test,the proposed benchmark-based HPO evaluation approach is feasible and robust. 展开更多
关键词 Neural networks Hyperparameter optimization Surface water quality prediction Bayes optimization Genetic algorithm
原文传递
Brain-inspired multimodal approach for effluent quality prediction using wastewater surface images and water quality data
8
作者 Junchen Li Sijie Lin +3 位作者 Liang Zhang Yuheng Liu Yongzhen Peng Qing Hu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第3期69-82,共14页
Efficiently predicting effluent quality through data-driven analysis presents a significant advancement for consistent wastewater treatment operations.In this study,we aimed to develop an integrated method for predict... Efficiently predicting effluent quality through data-driven analysis presents a significant advancement for consistent wastewater treatment operations.In this study,we aimed to develop an integrated method for predicting effluent COD and NH3 levels.We employed a 200 L pilot-scale sequencing batch reactor(SBR)to gather multimodal data from urban sewage over 40 d.Then we collected data on critical parameters like COD,DO,pH,NH_(3),EC,ORP,SS,and water temperature,alongside wastewater surface images,resulting in a data set of approximately 40246 points.Then we proposed a brain-inspired image and temporal fusion model integrated with a CNN-LSTM network(BITF-CL)using this data.This innovative model synergized sewage imagery with water quality data,enhancing prediction accuracy.As a result,the BITF-CL model reduced prediction error by over 23%compared to traditional methods and still performed comparably to conventional techniques even without using DO and SS sensor data.Consequently,this research presents a cost-effective and precise prediction system for sewage treatment,demonstrating the potential of brain-inspired models. 展开更多
关键词 Wastewater treatment system water quality prediction Data driven analysis Brain-inspired model Multimodal data Attention mechanism
原文传递
Modeling of Total Dissolved Solids (TDS) and Sodium Absorption Ratio (SAR) in the Edwards-Trinity Plateau and Ogallala Aquifers in the Midland-Odessa Region Using Random Forest Regression and eXtreme Gradient Boosting
9
作者 Azuka I. Udeh Osayamen J. Imarhiagbe Erepamo J. Omietimi 《Journal of Geoscience and Environment Protection》 2024年第5期218-241,共24页
Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. ... Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large. 展开更多
关键词 water quality Prediction Predictive Modeling Aquifers Machine Learning Regression eXtreme Gradient Boosting
下载PDF
Water quality soft-sensor prediction in anaerobic process using deep neural network optimized by Tree-structured Parzen Estimator 被引量:3
10
作者 Junlang Li Zhenguo Chen +7 位作者 Xiaoyong Li Xiaohui Yi Yingzhong Zhao Xinzhong He Zehua Huang Mohamed A.Hassaan Ahmed El Nemr Mingzhi Huang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第6期23-35,共13页
Anaerobic process is regarded as a green and sustainable process due to low carbon emission and minimal energy consumption in wastewater treatment plants(WWTPs).However,some water quality metrics are not measurable in... Anaerobic process is regarded as a green and sustainable process due to low carbon emission and minimal energy consumption in wastewater treatment plants(WWTPs).However,some water quality metrics are not measurable in real time,thus influencing the judgment of the operators and may increase energy consumption and carbon emission.One of the solutions is using a soft-sensor prediction technique.This article introduces a water quality soft-sensor prediction method based on Bidirectional Gated Recurrent Unit(BiGRU)combined with Gaussian Progress Regression(GPR)optimized by Tree-structured Parzen Estimator(TPE).TPE automatically optimizes the hyperparameters of BiGRU,and BiGRU is trained to obtain the point prediction with GPR for the interval prediction.Then,a case study applying this prediction method for an actual anaerobic process(2500 m^(3)/d)is carried out.Results show that TPE effectively optimizes the hyperparameters of BiGRU.For point prediction of CODeff and biogas yield,R^(2)values of BiGRU,which are 0.973 and 0.939,respectively,are increased by 1.03%–7.61%and 1.28%–10.33%,compared with those of other models,and the valid prediction interval can be obtained.Besides,the proposed model is assessed as a reliable model for anaerobic process through the probability prediction and reliable evaluation.It is expected to provide high accuracy and reliable water quality prediction to offer basis for operators in WWTPs to control the reactor and minimize carbon emission and energy consumption. 展开更多
关键词 water quality prediction Soft-sensor Anaerobic process Tree-structured Parzen Estimator
原文传递
Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian,China 被引量:25
11
作者 Lei Zhao Xiaoling Zhang +4 位作者 Yong Liu Bin He Xiang Zhu Rui Zou Yuanguan Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第8期1355-1363,共9页
Lake Fuxian is the largest deep freshwater lake in China. Although its average water quality meets Class I of the China National Water Quality Standard (CNWQS), i.e., GB3838-2002, monitoring data indicate that the w... Lake Fuxian is the largest deep freshwater lake in China. Although its average water quality meets Class I of the China National Water Quality Standard (CNWQS), i.e., GB3838-2002, monitoring data indicate that the water quality approaches the Class II threshold in some areas. Thus it is urgent to reduce the watershed load through the total maximum daily load (TMDL) program. A three-dimensional hydrodynamic and water quality model was developed for Lake Fuxian, simulating flow circulation and pollutant fate and transport. The model development process consists of several steps, including grid generation, initial and boundary condition configurations, and model calibration processes. The model accurately reproduced the observed water surface elevation, spatiotemporal variations in temperature, and total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) concentrations, suggesting a reasonable numerical representation of the prototype system for further TMDL analyses. The TMDL was calculated using two interpretations of the water quality standards for Class I of the CNWQS based on the maximum instantaneous surface and annual average surface water concentrations. Analysis of the first scenario indicated that the TN, TP and COD loads should be reduced by 66%, 68% and 57%, respectively. Water quality was the highest priority; however, local economic development and cost feasibility for load reduction can pose significant issues. In the second interpretation, the model results showed that, under the existing conditions, the average water quality meets the Class I standard and therefore load reduction is unnecessary. Future studies are needed to conduct risk and cost assessments for realistic decision-making. 展开更多
关键词 hydrodynamic and water quality model Lake Fuxian water quality prediction total maximum daily load
原文传递
Deep learning-based prediction of effluent quality of a constructed wetland 被引量:5
12
作者 Bowen Yang Zijie Xiao +5 位作者 Qingjie Meng Yuan Yuan Wenqian Wang Haoyu Wang Yongmei Wang Xiaochi Feng 《Environmental Science and Ecotechnology》 SCIE 2023年第1期64-74,共11页
Data-driven approaches that make timely predictions about pollutant concentrations in the effluent of constructed wetlands are essential for improving the treatment performance of constructed wetlands.However,the effe... Data-driven approaches that make timely predictions about pollutant concentrations in the effluent of constructed wetlands are essential for improving the treatment performance of constructed wetlands.However,the effect of the meteorological condition and flow changes in a real scenario are generally neglected in water quality prediction.To address this problem,in this study,we propose an approach based on multi-source data fusion that considers the following indicators:water quality indicators,water quantity indicators,and meteorological indicators.In this study,we establish four representative methods to simultaneously predict the concentrations of three representative pollutants in the effluent of a practical large-scale constructed wetland:(1)multiple linear regression;(2)backpropagation neural network(BPNN);(3)genetic algorithm combined with the BPNN to solve the local minima problem;and(4)long short-term memory(LSTM)neural network to consider the influence of past results on the present.The results suggest that the LSTM-predicting model performed considerably better than the other deep neural network-based model or linear method,with a satisfactory R^(2).Additionally,given the huge fluctuation of different pollutant concentrations in the effluent,we used a moving average method to smooth the original data,which successfully improved the accuracy of traditional neural networks and hybrid neural networks.The results of this study indicate that the hybrid modeling concept that combines intelligent and scientific data preprocessing methods with deep learning algorithms is a feasible approach for forecasting water quality in the effluent of actual engineering. 展开更多
关键词 LSTM Constructed wetlands water quality prediction Deep learning Multi-source data fusion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部