期刊文献+
共找到1,554篇文章
< 1 2 78 >
每页显示 20 50 100
From Chooz to the Ling'ao NPP:The Technology Transfer of Pressurized Water Reactor Technology from France to China
1
作者 CHEN Yue LI Yunyi 《Chinese Annals of History of Science and Technology》 2024年第1期97-124,共28页
The transfer of pressurized water reactor(PWR)technology from France to China is an important event in the history of Sino-French scientific and technological relations.China has gradually achieved self-reliance in th... The transfer of pressurized water reactor(PWR)technology from France to China is an important event in the history of Sino-French scientific and technological relations.China has gradually achieved self-reliance in the field of PWR technology through the introduction and subsequent absorption of France's 900 MW reactors.Compared with the process of introducing and absorbing similar technology from the United States by France,China's experience has been more complicated.This circumstance reflects the differences in the nuclear power technology systems between the two countries.France's industrial strength and early acquisition of nuclear power technology laid a solid foundation for mastering PWR technology.On the other hand,although China established a weak foundation through the implementation of the"728 Project,"and tried hard to negotiate with France,the substantive content of the technology transfer was very limited.By way of the policy transition from"unhooking of technology and trade"to"integration of technology and trade,"China ultimately accomplished the absorption and innovation of PWR technology through the Ling'ao NPP. 展开更多
关键词 pressurized water reactor(PWR) technology transfer Sino-French relations Chooz NPP Daya Bay NPP Ling'ao NPP
下载PDF
Recent studies on potential accident-tolerant fuel-cladding systems in light water reactors 被引量:7
2
作者 Sheng-Li Chen Xiu-Jie He Cen-Xi Yuan 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第3期94-123,共30页
Accident-tolerant fuel(ATF)has attracted considerable research attention since the 2011 Fukushima nuclear disaster.To improve the accident tolerance of the fuel-cladding systems in the current light-water reactors,it ... Accident-tolerant fuel(ATF)has attracted considerable research attention since the 2011 Fukushima nuclear disaster.To improve the accident tolerance of the fuel-cladding systems in the current light-water reactors,it is proposed to develop and deploy(1)an enhanced Zrbased alloy or coated zircaloy for the fuel cladding,(2)alternative cladding materials with better accident tolerance,and(3)alternative fuels with enhanced accident tolerance and/or a higher U density.This review presents the features of the current UO2-zircaloy system.Different techniques and characters to develop coating materials and enhanced Zr-based alloys are summarized.The features of several selected alternative fuels and cladding materials are reviewed and discussed.The neutronic evaluations of alternative fuel-cladding systems are analyzed.It is expected that one or more types of ATF-cladding systems discussed in the present review will be implemented in commercial reactors. 展开更多
关键词 Accident-tolerant fuel Accident-tolerant cladding Light-water reactor Neutronic evaluation
下载PDF
Development and Application of Maintenance Template in Pressurized Water Reactor Nuclear Power Plant 被引量:2
3
作者 张圣 陈宇 +1 位作者 曹智鹏 莫春铌 《Journal of Donghua University(English Edition)》 EI CAS 2015年第1期162-165,共4页
Good practices of maintenance optimization in nuclear power field need to be effectively consolidated and inherited,and maintenance optimization can provide technology support to create a long-term reliable and econom... Good practices of maintenance optimization in nuclear power field need to be effectively consolidated and inherited,and maintenance optimization can provide technology support to create a long-term reliable and economic operation for nuclear power plants( NPPs) especially for a large number of nuclear powers under construction. Based on the development and application of maintenance template in developed countries,and combining with reliability-centered maintenance( RCM) analysis results and maintenance experience data over the past ten years in domestic NPPs, the development process of maintenance template was presented for Chinese pressurized water reactor( PWR) NPP,and the application of maintenance template to maintenance program development and maintenance optimization combined with cases were demonstrated. A shortcut was provided for improving the efficiency of maintenance optimization in domestic PWR NPP,and help to realize a safe,reliable,and economic operation for domestic NPPs. 展开更多
关键词 pressurized water reactor(PWR) nuclear power plant maintenance template maintenance program maintenance optimization
下载PDF
Application of homogenization techniques for inflow transport approximation on light water reactor analysis 被引量:1
4
作者 Xiang Xiao Kan Wang +1 位作者 Tong-Rui Yang Yi-Xue Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第1期67-80,共14页
The transport cross-section based on inflow transport approximation can significantly improve the accuracy of light water reactor(LWR)analysis,especially for the treatment of the anisotropic scattering effect.The prev... The transport cross-section based on inflow transport approximation can significantly improve the accuracy of light water reactor(LWR)analysis,especially for the treatment of the anisotropic scattering effect.The previous inflow transport approximation is based on the moderator cross-section and normalized fission source,which is approximated using transport theory.Although the accuracy of reactivity is increased,the P0 flux moment has a large error in the Monte Carlo code.In this study,an improved inflow transport approximation was introduced with homogenization techniques,applying the homogenized cross-section and accurate fission source.The numerical results indicated that the improved inflow transport approximation can increase the P0 flux moment accuracy and maintain the reactivity calculation precision with the previous inflow transport approximation in typical LWR cases.In addition to this investigation,the improved inflow transport approximation is related to the temperature factors.The improved inflow transport approximation is flexible and accurate in the treatment of the anisotropic scattering effect,which can be directly used in the temperature-dependent nuclear data library. 展开更多
关键词 Inflow transport approximation Anisotropic scattering effect Homogenization techniques Light water reactor
下载PDF
Non-integer Order Control Scheme for Pressurized Water Reactor Core Power
5
作者 Ibrahim M.Mehedi Maher H.AL-Sereihy +1 位作者 Asmaa Ubaid Al-Saggaf Ubaid M.Al-Saggaf 《Computers, Materials & Continua》 SCIE EI 2022年第7期651-662,共12页
Tracking load changes in a pressurized water reactor(PWR)with the help of an efficient core power control scheme in a nuclear power station is very important.The reason is that it is challenging to maintain a stable c... Tracking load changes in a pressurized water reactor(PWR)with the help of an efficient core power control scheme in a nuclear power station is very important.The reason is that it is challenging to maintain a stable core power according to the reference value within an acceptable tolerance for the safety of PWR.To overcome the uncertainties,a non-integer-based fractional order control method is demonstrated to control the core power of PWR.The available dynamic model of the reactor core is used in this analysis.Core power is controlled using a modified state feedback approach with a non-integer integral scheme through two different approximations,CRONE(Commande Robuste d’Ordre Non Entier,meaning Non-integer orderRobust Control)and FOMCON(non-integer order modeling and control).Simulation results are produced using MATLAB■program.Both non-integer results are compared with an integer order PI(Proportional Integral)algorithm to justify the effectiveness of the proposed scheme.Sate-spacemodel Core power control Non-integer control Pressurized water reactor PI controller CRONE FOMCON. 展开更多
关键词 Sate-space model core power control non-integer control pressurized water reactor PI controller CRONE FOMCON
下载PDF
Validation of the Monte Carlo Model Designed to Simulate the Neutronic Characteristics of Advanced Boiling Water Reactor Assembly
6
作者 Ahmed Abdelghafar Galahom Ibrahim Ismail Bashter Moustafa Aziz 《Journal of Physical Science and Application》 2014年第5期310-316,共7页
In the last few years, interest in burnup calculations using Monte Carlo methods has increased. Previous burnup codes have used diffusion theory for the neutronic portion of the codes. Diffusion theory works well for ... In the last few years, interest in burnup calculations using Monte Carlo methods has increased. Previous burnup codes have used diffusion theory for the neutronic portion of the codes. Diffusion theory works well for most reactors. However, diffusion theory does not produce accurate results in burnup problems that include strong absorbers or large voids. MCNPX code based on Mont Carlo Method, is used to design a three dimensional model for a BWR fuel assembly in a typical operating temperature and pressure conditions. A test case was compared with a benchmark problem and good agreement was found. The model is used to calculate the distribution of pin by pin power and flux inside the assembly. The effect of axial variation of water (coolant) density, and of control rods motion on the neutron flux and power distribution is analyzed. The effect of addition of Gd2O3 to natural uranium (0.711%) on both the thermal neutron flux and normalized power are analyzed. The concentration of U^235, U^238, Pu^239, and its isotopes is also calculated at burn-up 50 GWD/T. 展开更多
关键词 MCNPX Code boiling water reactor thermal neutron flux normalized power multiplication factor.
下载PDF
Wide Range Neutron Monitoring(WRNM)System in Boiling Water Reactors(A Short Communication&Memorandum)
7
作者 Seyed Kamal Mousavi Balgehshiri Ali Zamani Paydar Bahman Zohuri 《Journal of Energy and Power Engineering》 2022年第5期186-212,共27页
The WRNM(wide range neutron monitoring)is a newly developed neutron monitoring channel which was initially conceived as a means to meet Regulatory Guide 1.97 requirements for post-accident neutron monitoring.The scope... The WRNM(wide range neutron monitoring)is a newly developed neutron monitoring channel which was initially conceived as a means to meet Regulatory Guide 1.97 requirements for post-accident neutron monitoring.The scope was expanded to include the startup monitoring function with the aim of replacing both the source and IRMs(intermediate range monitors)in BWRs(boiling water reactors).The WRNMs,consisting of a newly designed fixed incore regenerative sensor and new electronics,which include both counting and MSV(mean square voltage)channels,have been tested in several reactors and its capabilities have been confirmed.The channel will cover the neutron flux range from 103 nv to 1.5×103 nv;it has greater than 1 decade overlap between the counting and MSV channels.Because of the regenerative fissile coating the sensor,even though fixed incore,has a life of approximately 6.0 full power years in a 51 kW/L BWR and similar situation has been proposed for newly designed small modular reactor such as BWRX-300 of General Electric Hitachi reactor. 展开更多
关键词 BWR light water reactor advanced reactor advanced small modular reactor high temperature advanced reactor Generation IV nuclear power reactors nuclear energy nuclear radiation environment
下载PDF
Neutronic analysis of silicon carbide cladding accident-tolerant fuel assemblies in pressurized water reactors 被引量:5
8
作者 Zhi-Xiong Tan Jie-Jin Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第3期105-113,共9页
In resonance with the Fukushima Daiichi Nuclear Power Plant accident lesson, a novel fuel design to enhance safety regarding severe accident scenarios has become increasingly appreciated in the nuclear power industry.... In resonance with the Fukushima Daiichi Nuclear Power Plant accident lesson, a novel fuel design to enhance safety regarding severe accident scenarios has become increasingly appreciated in the nuclear power industry. This research focuses on analysis of the neutronic properties of a silicon carbide(SiC) cladding fuel assembly, which provides a greater safety margin as a type of accident-tolerant fuel for pressurized water reactors. The general physical performance of SiC cladding is explored to ascertain its neutronic performance. The neutron spectrum, accumulation of ^(239)Pu, physical characteristics,temperature reactivity coefficient, and power distribution are analyzed. Furthermore, the influences of a burnable poison rod and enrichment are explored. SiC cladding assemblies show a softer neutron spectrum and flatter power distribution than conventional Zr alloy cladding fuel assemblies. Lower enrichment fuel is required when SiC cladding is adopted. However, the positive reactivity coefficient associated with the SiC material remains to be offset. The results reveal that SiC cladding assemblies show broad agreement with the neutronic performance of conventional Zr alloy cladding fuel. In the meantime, its unique physical characteristics can lead to improved safety and economy. 展开更多
关键词 Accident-tolerant fuels Silicon CARBIDE CLADDING NEUTRONIC characteristics Pressurized water reactor
下载PDF
Theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor 被引量:1
9
作者 GOU Jun-Li QIU Sui-Zheng SU Guang-Hui JIA Dou-Nan 《Nuclear Science and Techniques》 SCIE CAS CSCD 2006年第5期314-320,共7页
This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single... This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the pre- liminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the pri- mary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation. 展开更多
关键词 核反应堆 压水堆 稳态自然循环 高度差 理论研究
下载PDF
Characterization of solid particles sampled from condensates in boiling water reactor
10
作者 Yu-Hung Shih Tung-Jen Wen +1 位作者 Liang-Cheng Chen Tsuey-Lin Tsai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2016年第2期141-148,共8页
The growth, activation and deposition of corrosion products are the primary sources of radiation buildup on the surface of out-of-core piping in nuclear power plants. The buildup of radiation can have negative effects... The growth, activation and deposition of corrosion products are the primary sources of radiation buildup on the surface of out-of-core piping in nuclear power plants. The buildup of radiation can have negative effects on the performance of the facility and cause harm to staff during maintenance outages for refueling. This paper reports on the crystalline and amorphous structures of corrosion products sampled in the boiling water reactors in nuclear power plants of Kuo-Sheng and identified using an acid dissolving technique. X-ray diffraction, scanning electron microprobe and inductively coupled plasmaatomic emission spectroscopy were used to analyze the samples. The results indicate that the quantity of amorphous iron oxide at inlet of the condensate demineralizer in Unit 2 is higher than that in Unit 1. The proportion of crystalline to amorphous corrosion products can affect the efficiency of removal. Thus, these results can be used to explain the difference in removal efficiency of condensate demineralizers in different units. Moreover, the iron oxide structures with various properties were observed in different operational periods. It is probable that the higher proportion of amorphous structures with a smaller particle size would reduce efficiency in the removal of condensate demineralization in Unit 2. 展开更多
关键词 沸水反应堆 电感耦合等离子体原子发射光谱法 固体颗粒 采样 无定形结构 表征 凝聚 腐蚀产物
下载PDF
Optimization of the fuel rod's arrangement cooled by turbulentnanofluids flow in pressurized water reactor (PWR)
11
作者 M. Hatami MJ.Z. Ganfi +1 位作者 I. Sohrabiasl D. Jing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第6期722-731,共10页
In this paper, response surface methodology(RSM) based on central composite design(CCD) is applied to obtain an optimization design for the fuel rod's diameter and distance cooled by turbulent Al_2O_3–water nanof... In this paper, response surface methodology(RSM) based on central composite design(CCD) is applied to obtain an optimization design for the fuel rod's diameter and distance cooled by turbulent Al_2O_3–water nanofluid for a typical pressurized water reactor(PWR). Fuel rods and nanofluid flow between them are simulated 3D using computational fluid dynamics(CFD) by ANSYS-FLUNET package software. The RNG k–ε model is used to simulate turbulent nanofluid flow between the rods. The effect of different nanoparticles concentration is also investigated on the Nusselt number from heat transfer efficiency view point. Results reveal that when distance parameter(a) is in the minimum level and diameter parameter(r) is in the maximum possible level, cooling the rods will be better due to higher Nusselt number in this situation. Also, using the different nanoparticles on the cooling process confirms that Al_2O_3 averagely 17% and TiO_2 10% improve the Nusselt numbers. 展开更多
关键词 OPTIMIZATION FUEL RODS NANOFLUID Pressurized water reactor
下载PDF
Passive Cooldown Performance of Integral Pressurized Water Reactor
12
作者 Shoubao Dai Chunnan Jin +1 位作者 Jingfu Wang Yuxiang Chen 《Energy and Power Engineering》 2013年第4期505-509,共5页
The design of an integral pressurized water reactor (IPWR) focuses on enhancing the safety and reliability of the reactor by incorporating a number of inherent safety features and engineered safety features. However, ... The design of an integral pressurized water reactor (IPWR) focuses on enhancing the safety and reliability of the reactor by incorporating a number of inherent safety features and engineered safety features. However, the characteristics of passive safety systems for the marine reactors are quiet different from those for the land nuclear power plant because of the more formidable and dangerous operation environments of them. This paper presents results of marine black out accident analyses. In the case of a transient, the passive residual heat removal system (PRHRS) is designed to cool the reactor coolant system (RCS) from a normal operation condition to a hot shutdown condition by a natural circulation, and the shutdown cooling system (SCS) is designed to cool the primary system from a hot shutdown condition to a refueling condition by a forced circulation. A realistic calculation has been carried out by using the RELAP5/MOD3.4 code and a sensitivity analysis has been performed to evaluate a passive cooldown capability. The results of the accident analyses show that the reactor coolant system and the passive residual heat removal system adequately remove the core decay heat by a natural circulation. 展开更多
关键词 An INTEGRAL Pressurized water reactor (IPWR) PASSIVE Safety System STYLING NATURAL CIRCULATION
下载PDF
Preliminary study of the tight lattice pressured heavy water reactor loaded with Pu/U and Th/U mixed fuels
13
作者 XU Xiao-Qin, XU Qiu, YOSHIIE Toshimasa, SHIROYA Seiji (Nuclear Science Department, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan) Engineering 《Nuclear Science and Techniques》 SCIE CAS CSCD 2001年第4期302-308,共7页
To improve nuclear fuel utilization efficiency and prolong fuel cycle burn-up, a tight pitch lattice pressured heavy water reactor was investigated as an alternative of next generation of power reactors. It is shown t... To improve nuclear fuel utilization efficiency and prolong fuel cycle burn-up, a tight pitch lattice pressured heavy water reactor was investigated as an alternative of next generation of power reactors. It is shown that the high conversion ratio and negative coolant void reactivity coefficient are challenges in the reactor core physics designs. Various techniques were proposed to solve these problems. In this work, a tight pitch lattice and mixed fuel assemblies pressured heavy water reactor concept was investigated. By utilizing numerical simulation technique, it is demonstrated that reactor core mixed with Pu/U and Th/U assemblies can achieve high conversion ratio (0.98), long burn-up (60 GWD/t) and negative void reactivity coefficients. 展开更多
关键词 高压重水反应堆 核电站 Th/U混合燃料
下载PDF
Analysis of Neutronic Characteristics of Uranium Zirconium Hydride Fuel in Advanced Boiling Water Reactor
14
作者 Ahmed Abdelghafar Galahom Ibrahim Ismail Bashter Moustafa Aziz 《材料科学与工程(中英文A版)》 2013年第6期437-442,共6页
关键词 先进沸水堆 燃料组件 中子通量 氢化锆 蒙特卡罗法 特性 三维模型 ABWR
下载PDF
Control system design for a pressure-tube-type supercritical water-cooled nuclear reactor via a higher order sliding mode method
15
作者 M.Hajipour G.R.Ansarifar 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期145-154,共10页
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor... Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering. 展开更多
关键词 Supercritical water nuclear reactor Higher order sliding mode controller Steam temperature Steam pressure Point kinetics model
下载PDF
Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment 被引量:4
16
作者 Lijin Dong Cheng Ma +2 位作者 Qunjia Peng En-Hou Han Wei Ke 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第5期1-14,共14页
Stress corrosion cracking(SCC) of an SA508-309 L/308 L–316 L dissimilar metal weld joint in primary pressurized water reactor environment was investigated by the interrupted slow strain rate tension tests following a... Stress corrosion cracking(SCC) of an SA508-309 L/308 L–316 L dissimilar metal weld joint in primary pressurized water reactor environment was investigated by the interrupted slow strain rate tension tests following a microstructure characterization. The 308 L weld metal shows a higher content of δ ferrite than the 309 L weld metal. In addition, no obvious Cr-depletion but carbides precipitation at δ phase boundaries was observed in both 308 L and 309 L weld metals. The slow strain rate tension tests showed that the SCC susceptibility of the base and weld metals of the dissimilar metal weld joint follows the order of SA508 < 308 L weld metal < the heat affected zone of 316 L base metal < 309 L weld metal.The higher SCC susceptibility of 309 L weld metal than that of 308 L weld metal is likely due to the lower content of δ ferrite. In addition, a preferential SCC initiation in the 309 L weld metal adjacent to 308 L weld metal is attributed to few carbides in this region. 展开更多
关键词 Dissimilar metal WELD joint Stress corrosion cracking MICROSTRUCTURE PRIMARY pressurized water reactor ENVIRONMENT SLOW strain rate tension
原文传递
Removal of NO and SO2 in Corona Discharge Plasma Reactor with Water Film 被引量:3
17
作者 贺元吉 董丽敏 杨嘉祥 《Plasma Science and Technology》 SCIE EI CAS CSCD 2004年第2期2250-2254,共5页
In this paper, a novel type of a corona discharge plasma reactor was designed, which consists of needle-plate-combined electrodes, in which a series of needle electrodes are placed in a glass container filled with flu... In this paper, a novel type of a corona discharge plasma reactor was designed, which consists of needle-plate-combined electrodes, in which a series of needle electrodes are placed in a glass container filled with flue gas, and a plate electrode is immersed in the water. Based on this model, the removal of NO and SO2 was tested experimentally. In addition, the effect of streamer polarity on the reduction of SO2 and NO was investigated in detail. The experimental results show that the corona wind formed between the high-voltage needle electrode and the water by corona discharge enhances the cleaning efficiency of the flue gas because of the presence of water, and the cleaning efficiency will increase with the increase of applied dc voltage within a definite range. The removal efficiency of SO2 up to 98%, and about 85% of NOx removal under suitable conditions is obtained in our experiments. 展开更多
关键词 corona discharge plasma reactor water film
下载PDF
Oilfield produced water treatment in internal-loop airlift reactor using electrocoagulation/flotation technique 被引量:8
18
作者 Saad H.Ammar Ahmed S.Akbar 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第4期879-885,共7页
Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produc... Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produced water(PW) contains a lot of pollutants such as hydrocarbons and metals, this water must be treated before disposal. Therefore, different techniques are being used to treat produced water. Electrocoagulation is an efficient treatment technique involving the dissolution of anodes and formation of electro-coagulants, while the simultaneous generation of H_2 bubbles at the cathode leads to the pollutant removal by flotation. Electrocoagulation(EC)method is one of the most promising and widely used processes to treat oilfield produced water. In the present work, a conventional internal-loop(draught tube) airlift reactor was utilized as electrocoagulation/flotation cell for PW treatment by inserting two aluminum electrodes in the riser section of the airlift reactor. The EC airlift reactor was operated in a batch mode for the liquid phase. Different experimental parameters were studied on the oil and turbidity removal efficiencies such as current density, initial pH, electrocoagulation time, and air injection.The experimental results showed that mixing of the oil droplets in the PW was accomplished using only the liquid recirculation resulted by H_2 microbubbles generated by EC process which enhanced the oil removal. The experimental results further showed that the EC time required achieving ≥ 90% oil removal efficiency decreases from 46 to 15 min when operating current density increases from 6.8 to 45.5 mA·cm^(-2). This reactor type was found to be highly efficient and less energy consuming compared to conventional existing electrochemical cells which used mechanical agitation. 展开更多
关键词 Produced water Wastewater treatment Electrocoagulation/flotation Internal loop Airlift reactor
下载PDF
Analysis on thermophoretic deposit of fine particle on water wall of 10 MW high temperature gas-cooled reactor 被引量:1
19
作者 ZHOUTao YANGRui-Chang JIADou-Nan 《Nuclear Science and Techniques》 SCIE CAS CSCD 2005年第1期46-52,共7页
The water wall is an important part of the passive natural circulation residual heat removal system in a high temperature gas-cooled reactor. The maximum temperatures of the pressure shell and the water wall are calcu... The water wall is an important part of the passive natural circulation residual heat removal system in a high temperature gas-cooled reactor. The maximum temperatures of the pressure shell and the water wall are calcu- lated using annular vertical closed cavity model. Fine particles can deposit on the water wall due to the thermophore- sis effect. This deposit can affect heat transfer. The thermophoretic deposit efficiency is calculated by using Batch and Shen’s formula fitted for both laminar flow and turbulent flow. The calculated results indicate that natural convection is turbulent in the closed cavity. The transient thermophoretic deposit efficiency rises with the increase of the pressure shell’s temperature. Its maximum value is 14%. 展开更多
关键词 高温气冷反应堆 压水堆 放射性微粒 热敏致电沉积 安全防护
下载PDF
Corrosion of candidate materials for supercritical water-cooled reactor
20
作者 ZHANG Lefu~(1)),BAO Yichen~(1)) and TANG Rui~(2)) 1) School of Nuclear Sci.&Eng,Shanghai Jiao Tong Univ.,Shanghai 200240,China 2) National Key Laboratory for Nuclear Fuel and Materials,Nuclear Power Institute of China,Chengdu 610041,China 《Baosteel Technical Research》 CAS 2010年第S1期71-,共1页
Supercritical water reactor(SCWR) was proposed as a GenerationⅣconcept for building large capacity nuclear power plants.Comparing with the present GenerationⅡandⅢlight water reactors,SCWR possesses great advantages... Supercritical water reactor(SCWR) was proposed as a GenerationⅣconcept for building large capacity nuclear power plants.Comparing with the present GenerationⅡandⅢlight water reactors,SCWR possesses great advantages of 10%higher efficiency,simpler system design,better sustainability,and so on. However,the selection of materials for fuel cladding and reactor internals of SCWR is facing a great challenge. Corrosion in supercritical steam is of the first important issue to be solved to meet the stringent requirement of the reactor internal components.Corrosion screening tests were conducted on candidate materials for nuclear fuel cladding and reactor internals of supercritical water reactor(SCWR) in static and re-circulating autoclave at the temperatures of 550,600 and 650℃,pressure of about 25 MPa,deaerated or saturated dissolved hydrogen(STP). Nickel base alloy type Hastelloy C276,austenitic stainless steels type 304NG,AL-6XN,HR3C.NF709 and SAVE 25,ferritic/martensitic(F/M) steel type P92,P122 and 410,and oxide dispersion strengthened steel MA 956,are tested.This paper presents corrosion rate,and focuses on the formation and breakdown of corrosion oxide film,and proposes the future trend for the development of SCWR internal structure materials. 展开更多
关键词 supercritical water cooled reactor cladding material CORROSION protective oxide film
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部