期刊文献+
共找到5,202篇文章
< 1 2 250 >
每页显示 20 50 100
Synthesis Analysis of Soil Erosion for Three-River Headwater Region Based on GIS 被引量:11
1
作者 陈琼 吴万贞 +3 位作者 周强 杨玉含 Wan-zhen Yu-han 《Agricultural Science & Technology》 CAS 2010年第5期155-158,共4页
In this paper,based on the common soil erosion model,the Three-River Headwaters region was select for study object. GIS methods are applied to conduct Semi-quantitative assessment for different types of soil erosion,a... In this paper,based on the common soil erosion model,the Three-River Headwaters region was select for study object. GIS methods are applied to conduct Semi-quantitative assessment for different types of soil erosion,and some results are concluded. The water erosion occurs in High Mountain and extra-high mountain of Yushu,Nangqian,Banma and Jiuzhi County in the southeast and south of the Three-River Headwaters region. The degree of erosion is prone to topography,precipitation,river and human activity. The freeze-thaw erosion mainly distributes in the northwest of the Three-River Headwaters region. The area of middle and above middle erosion degree accounts for roughly 50%. 展开更多
关键词 Three-River Headwaters region Soil erosion Comprehensive analysis
下载PDF
Innovative Technologies for Large-Scale Water Production in Arid Regions: Strategies for Sustainable Development
2
作者 Boris Menin 《Journal of Applied Mathematics and Physics》 2024年第7期2506-2558,共53页
Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of wate... Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development. 展开更多
关键词 Atmospheric water Generation Advanced Desalination Sustainable Development Geothermal water Extraction water Recycling Arid regions water Security
下载PDF
An Assessment of Saltwater Intrusion in Coastal Regions of Lagos, Nigeria
3
作者 Obunadike Callistus Akerele D. Daniel +4 位作者 Abiodun O. Pelumi Olisah Somtobe Oloyede Kunle Obunadike S. Echezona Obunadike J. Chinenye 《Journal of Geoscience and Environment Protection》 2024年第1期93-119,共27页
This paper explains various factors that contribute to saltwater intrusion, including overexploitation of freshwater resources and climate change as well as the different techniques essential for effective saltwater i... This paper explains various factors that contribute to saltwater intrusion, including overexploitation of freshwater resources and climate change as well as the different techniques essential for effective saltwater intrusion management. The impact of saltwater intrusion along coastal regions and its impact on the environment, hydrogeology and groundwater contamination. It suggests potential solutions to mitigate the impact of saltwater intrusion, including effective water management and techniques for managing SWI. The application of A.I (assessment index) serves as a guideline to correctly identify wells with SWI ranging from no intrusion, slight intrusion and strong intrusion. The challenges of saltwater intrusion in Lagos and the salinization of wells were investigated using the hydro-chemical parameters. The study identifies four wells (“AA”, “CMS”, “OBA” and “VIL”) as having high electric conductivities, indicating saline water intrusion, while other wells (“EBM”, “IKJ, and “IKO”) with lower electric conductivities, indicate little or no salt-water intrusion, and “AJ” well shows slight intrusion. The elevation of the wells also played a vital role in the SWI across coastal regions of Lagos. The study recommends continuous monitoring of coastal wells to help sustain and reduce saline intrusion. The findings of the study are important for policymakers, researchers, and practitioners who are interested in addressing the challenges of saltwater intrusion along coastal regions. We assessed the SWI across the eight (8) wells using the Assessment Index to identify wells with SWI. Wells in “CMS” and “VIL” has strong intrusions. A proposed classification system based on specific ion ratios categorizes water quality from good (+) to highly (-) contaminated (refer to Table 4). These findings underscore the need for attention and effective management strategies to address groundwater unsuitability for various purposes. 展开更多
关键词 Hydro-Chemical Data Analysis Saline Incursion Aquifer Sustainability and Management Coastal regions Ground water Intrusion
下载PDF
A comparative study of the land-atmosphere energy and water exchanges over the Tibetan Plateau and the Yangtze River Region
4
作者 Nan Yao Yaoming Ma +3 位作者 Binbin Wang Jun Zou Jianning Sun Zhipeng Xie 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第2期52-59,共8页
正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8... 正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础. 展开更多
关键词 能量和水分交换 辐射分量 地表能量通量 青藏高原 长江流域 不同地表类型
下载PDF
Driving forces and their interactions of soil erosion in soil and water conservation regionalization at the county scale with a high cultivation rate
5
作者 LUO Bang-lin LI Jiang-wen +2 位作者 GONG Chun-ming ZHONG Shou-qin WEI Chao-fu 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2502-2518,共17页
Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatia... Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatial heterogeneity and driving factors of soil erosion among different regions is still lacking.It is of great significance for soil erosion control to deeply examine the factors contributing to soil erosion(natural,land use,and socioeconomic factors)and their interaction at the county and regional levels.This study focused on a highly cultivated area,Hechuan District of Chongqing in the Sichuan Basin.The district(with 30 townships)was divided into four soil and water conservation regions(Ⅰ-Ⅳ)using principal component and hierarchical cluster analysis.The driving factors of soil erosion were identified using the geographical detector model.The results showed thatⅰ)the high cultivation rate was a prominent factor of soil erosion,and the sloping farmland accounted for 78.4%of the soil erosion in the study area;ⅱ)land use factors demonstrated the highest explanatory power in soil erosion,and the average interaction of land use factors explained 60.1%of soil erosion in the study area;ⅲ)the interaction between natural factors,socioeconomic factors,and land use factors greatly contributes to regional soil erosion through nonlinear-enhancement of double-factor enhancement.This study highlights the importance of giving special attention to the effects of land use factors on soil erosion at the county scale,particularly in mountainous and hilly areas with extensive sloping farmland and a high cultivation rate. 展开更多
关键词 Soil and water Conservation regionalization Driving factors Soil erosion Geographical detector model Spatial heterogeneity
下载PDF
Dissolution mechanism of a deep-buried sandstone reservoir in a deep water area:A case study from Baiyun Sag,Zhujiang River(Pearl River)Mouth Basin 被引量:1
6
作者 Jihua Liao Keqiang Wu +3 位作者 Lianqiao Xiong Jingzhou Zhao Xin Li Chunyu Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期151-166,共16页
Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sa... Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag. 展开更多
关键词 dissolution mechanism deep-buried reservoir diagenesis evolution reservoir prediction deep water region Baiyun Sag
下载PDF
Methodology to determine regional water demand for instream flow and its application in the Yellow River Basin 被引量:7
7
作者 ZHANG Yuan YANG Zhi-feng Wang Xi-qin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第5期1031-1039,共9页
In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a conce... In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a concept of regional water demand for minimum instream flow have been developed. The concept was used in the process of determining river functions and calculating ecological water demand for a river. The Yellow River watershed was used to validate the calculation methodology for regional water demand. CaIculation results indicate that there are significant differences in water demands among the different regions. The regional water demand at the downstream of the Yellow River is the largest about 14.893 × 10^9 m^3/a. The regional water demand of upstream, Lanzhou-Hekou section is the smallest about -5.012 × 10^9 m^3/a. The total ecological water demand of the Yellow River Basin is 23.06 × 10^9 m^3/a, about the 39% of surface water resources of the water resources should not exceed 61% in the Yellow River Basin. Yellow River Basin. That means the maximum available surface The regional river ecological water demands at the Lower Section of the Yellow River and Longyangxia-Lanzhou Section exceed the surface water resources produced in its region and need to be supplemented from other regions through the water rational planning of watershed water resources. These results provides technical basis for rational plan of water resources of the Yellow River Basin. 展开更多
关键词 regional water demand instream flow environmental flow METHODOLOGY the Yellow River Basin
下载PDF
Regional differences of water conservation in Beijing’s forest ecosystem 被引量:10
8
作者 ZHANG Biao XIE Gao-di YAN Yu-ping YANG Yan-gang 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第2期295-300,共6页
The water conservation capacities of main forests in Beijing,China were estimated through the quantitative analysis.Various methods developed in published papers on forest hydrology were employed.The forests in Huairo... The water conservation capacities of main forests in Beijing,China were estimated through the quantitative analysis.Various methods developed in published papers on forest hydrology were employed.The forests in Huairou,Yanqing,Miyun,Mentougou and Fangshan districts are the main contributors to water conservation(the cumulative ratio reaches 65%),and the forests in Tongzhou,Chaoyang,Shunyi and Daxing districts have the highest water conservation capacity(3000 m3/ha).Altitude and slope are the key factors to affect the water conservation capacity.The forests located in Plain Area,Hilly Area,Low Mountain,and Middle Mountain contributes 27%,28%,24% and 21% of the conserved water,respectively.The water conservation capacity of forests in Plain Area(2 948 m3/ha),is superior to the forests in other regions.And the forests situated on Flat Slope,Moderate Slope and Gentle Slope constitute the largest proportion(nearly 93%) of water conservation,while the forests on Flat Slope has the highest water conservation capacity(2 797 m3/ha),and the forest on Steep slope has the lowest water conservation capacity(948 m3/ha). 展开更多
关键词 forest ecosystem regional difference water conservation BEIJING
下载PDF
ON REGIONAL DIFFERENTIATION OF RIVER WATER ENVIRONMENT CAPACITY AND STRATEGIES TO CONTROL WATER ENVIRONMENT POLLUTION IN CHINA 被引量:4
9
作者 王华东 王淑华 +1 位作者 鲍全盛 祁忠 《Chinese Geographical Science》 SCIE CSCD 1995年第2期116-124,共9页
China has large population and wide territory, the natural conditions of different regions are complicated. water resources are distributed unbalanced.economic developing states are unequal. For these reasons the vari... China has large population and wide territory, the natural conditions of different regions are complicated. water resources are distributed unbalanced.economic developing states are unequal. For these reasons the variation of concerned water environment capacity has obvious character of regional differentiation. In this paper, from the economic development point of view, the regular pattern of regional differentiation of China's water environment capacity resources is analyzed. the concept of contradictory degree between water environment capacity and economic development is introduced, based on them, rivers in China are divided into three regions, and corresponding strategies to control water pollution are advanced. The aims are to use river water environment capacity resources effectively. to control pollution and to improve environmental quality. 展开更多
关键词 water ENVIRONMENT capacity. regionAL differentiation. pollutioncontrol total quantity CONTROL
下载PDF
CHARACTERISTICS OF WATER TRANSFORMATION AND ITS EFFECTS ON ENVIRONMENT IN THE ARID REGION —A case study in Alar irrigation region of Xinjiang, China 被引量:2
10
作者 Xin Li Yu-dong Song Fu-hua Nian 《Chinese Geographical Science》 SCIE CSCD 2000年第1期53-61,共9页
The characteristics of water balance in arid regions is that the streams are formed in mountain area and continuously evaporates and infiltrates in the process of flowing to plain area, streams finally disappear in th... The characteristics of water balance in arid regions is that the streams are formed in mountain area and continuously evaporates and infiltrates in the process of flowing to plain area, streams finally disappear in the desert or flow into the lakes, which are the low reaches of the rivers. But the distribution and transformation of water in Xinjiang, China have changed under the influences of human activities. The influences of human activities take place in a short time and regionally, especially in arid land where water is the key factor of environment. Water inside of oasis has increased, and water out of oasis or at the lower reaches of the river has decreased. Human activities have caused the environment changes in both positive and negative aspects by changing the circulation and distribution of water. Under the influence of human activities, oases in Xinjiang have expanded, meanwhile some lakes have contracted desertification is serious, natural vegetation has declined and natural environment out of oasis has degenrated. 展开更多
关键词 ARID region water TRANSFORMATION human activity ENVIRONMENT
下载PDF
Responses of water productivity to irrigation and N supply for hybrid maize seed production in an arid region of Northwest China 被引量:4
11
作者 RAN Hui KANG Shaozhong +4 位作者 LI Fusheng DU Taisheng DING Risheng LI Sien TONG Ling 《Journal of Arid Land》 SCIE CSCD 2017年第4期504-514,共11页
Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Fie... Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China. 展开更多
关键词 water use efficiency water stress nitrogen use efficiency evapotranspiration water productivity for yield water productivity for biomass arid region
下载PDF
Water protection in the western semiarid coal mining regions of China: A case study 被引量:5
12
作者 Huang Hanfu Wang Changshen +1 位作者 Bai Haibo Wang Zihe 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期719-723,共5页
The coal industry in China has been moving from the semiarid eastern to the drier western regions since the beginning of this century.Water protection is of the utmost concern for coal mining in these regions.Lu'a... The coal industry in China has been moving from the semiarid eastern to the drier western regions since the beginning of this century.Water protection is of the utmost concern for coal mining in these regions.Lu'an,as one of the state coal mining bases in China,has been seeing increasingly heavier pressure for the protection of water resources.This article considers Lu'an as an example and describes the ways these concerns may be alleviated.High mine-water utilization rates have effectively reduced wasting of water and,consequently,have reduced water demand.Using the top layers of the Ordavician as aquifuge barriers can prevent floor karst water inrush into the longwall face and can protect the regional Ordovician karst water resources at the same time.The strength of the overlying Quaternary clay can protect against roof collapse and has successfully preserved the Quaternary porous water resource. 展开更多
关键词 water-protection Coal mining Mine water utilization rate Aquifuge barrier Arid region
下载PDF
DEVELOPMENT STRATEGIES OF WATER AND LAND RESOURCES IN THE HEXI REGION,CHINA 被引量:1
13
作者 肖洪浪 高前兆 李福兴 《Chinese Geographical Science》 SCIE CSCD 1996年第1期49-56,共8页
Hexi region is located in the northwest arid zone in China,being both the base of industry and agriculture,and the prop of developing northwestern China on a large scale in the next century.On the basis of the study o... Hexi region is located in the northwest arid zone in China,being both the base of industry and agriculture,and the prop of developing northwestern China on a large scale in the next century.On the basis of the study on exploitation and utilization process of water and land resources in past 40 years,and present productivity,this paper approaches the utilization trend and development potential of water and land resources;analyses the characteristics,problems and directions of resource utilization in the future;and proposes the countermeasures of rational development of water and land resources. 展开更多
关键词 RESOURCES of water and LAND regionAL development STRATEGIC FORECAST
下载PDF
Analysis of Water Resources Supply and Demand and Security of Water Resources Development in Irrigation Regions of the Middle Reaches of the Heihe River Basin, Northwest China 被引量:11
14
作者 JI Xi-bin KANG Er-si +3 位作者 CHEN Ren-sheng ZHAO Wen-zhi XlAO Sheng-chun JIN Bo-wen 《Agricultural Sciences in China》 CAS CSCD 2006年第2期130-140,共11页
Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance o... Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system. 展开更多
关键词 middle reaches of Heihe River irrigation region water resources supply and demand balance evaluation of the security of water resources
下载PDF
Regions and Their Typical Paradigms for Soil and Water Conservation in China 被引量:1
15
作者 DANG Xiaohu SUI Boyang +5 位作者 GAO Siwen LIU Guobin WANG Tao WANG Bing NING Duihu BI Wei 《Chinese Geographical Science》 SCIE CSCD 2020年第4期643-664,共22页
China is experiencing conflicts between its large population and scarce arable land,and between a demand for high productivity and the severe soil erosion of arable land.Since 1949,China has committed to soil and wate... China is experiencing conflicts between its large population and scarce arable land,and between a demand for high productivity and the severe soil erosion of arable land.Since 1949,China has committed to soil and water conservation(SWC),for which eight regions and 41 subregions have been developed to improve the environment and increase land productivity.To obtain information from the regional planning and strategies for SWC and to explore whether SWC practices simultaneously contribute to soil conservation,ecosystem functioning,and the livelihoods of local farmers,and to summarize the successful experiences of various SWC paradigms with distinct characteristics and mechanisms of soil erosion,this paper systematically presents seven SWC regions(excluding the Tibetan Plateau region)and 14 typical SWC paradigms,focusing on erosion mechanisms and the key challenges or issues in the seven regions as well as on the core problems,main objectives,key technologies,and the performance of the 14 typical paradigms.In summary,the 14 typical SWC paradigms successfully prevent and control local soil erosion,and have largely enhanced,or at least do not harm,the livelihoods of local farmers.However,there remain many challenges and issues on SWC and socioeconomic development that need to be addressed in the seven SWC regions.China,thus,still has a long way to go in successfully gaining the win-win objective of SWC and human aspects of development. 展开更多
关键词 regions for soil and water conservation soil erosion dryland farming collapse erosion karst rocky desertification typical paradigm for soil and water conservation
下载PDF
Legislation on protection of drinking water sources and local management practices in the Pearl River Delta region of China 被引量:6
16
作者 Zhigang Wang Yang Liu +2 位作者 Yingzhi Li Peng Zhao Jiangyu Yu 《Chinese Journal of Population,Resources and Environment》 2016年第2期144-152,共9页
The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region w... The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region was investigated using a method combining Google Earth with the field survey.The gaps between management practices and legislation requirements were analyzed.Finally,several countermeasures for water resource protection were proposed as follows:to promote delineation in a more scientific way,to safeguard the sanctity of the law,to make better plan on water saving,and to encourage public participation in supervision and management. 展开更多
关键词 Pearl River Delta region drinking water source protection area for drinking water source COUNTERMEASURES
下载PDF
Assessment of impact of water diversion projects on ecological water uses in arid region 被引量:3
17
作者 Song-hao SHANG Hui-jie WANG 《Water Science and Engineering》 EI CAS CSCD 2013年第2期119-130,共12页
In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, we... In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, wetland, and riparian ecosystems. To assess the integrated impact of water diversion on ecological water uses, we proposed a hierarchy evaluation model composed of four layers representing the evaluation goal, sub-areas of the influenced region, evaluation criteria, and water diversion schemes, respectively. The evaluation criteria for different types of ecological water uses were proposed, and the analytical hierarchy process was used for the integrated assessment. For a river ecosystem, the percentage of mean annual flow was used to define the grade of environmental flow. For a lake ecosystem, water recharge to the lake to compensate the lake water losses was used to assess the ecological water use of a lake. The flooding level of the wetland and the groundwater level in the riparian plain were used to assess the wetland and riparian ecological water uses, respectively. The proposed model was applied to a basin in northern Xinjiang in northwest China, where both water diversion and inter-basin water transfer projects were planned to be carried out. Based on assessment results for the whole study area and two sub-areas, an appropriate scheme was recommended from four planning schemes. With the recommended scheme, ecological water uses of the influenced ecosystems can be maintained at an acceptable level. Meanwhile, economical water requirements can be met to a great extent. 展开更多
关键词 arid region water diversion project environmental impact assessment ecological water use environmental flow riparian forest analytic hierarchy process
下载PDF
Relationship Between Watershed Landscape Pattern Change and Runoff-Sediment in Wind-Water Erosion Crisscross Region 被引量:1
18
作者 WANG Jinhua ZHANG Ronggang +2 位作者 JIN Lijun YAO Wenyi LI Zhanbin 《Journal of Landscape Research》 2017年第5期53-58,共6页
This paper selected the typical wind-water erosion crisscross region Xiliugou watershed for research to reveal the impact of the landscape pattern change of the underlying surface in wind-water erosion crisscross regi... This paper selected the typical wind-water erosion crisscross region Xiliugou watershed for research to reveal the impact of the landscape pattern change of the underlying surface in wind-water erosion crisscross region where soil erosion is most serious on rainfall and runoff as well as erosion and sediment.Based on the Landsat TM image data and measured data of runoff-sediment in that watershed,the paper analyzed the characteristics of watershed landscape pattern change and runoff-sediment and explored the relationship between landscape index and runoff-sediment yield by means of GIS and Fragstats.The results were included as follows.(1)Grassland was the dominant landscape.In terms of the number of patches and area change rate,from 1985 to 2010,cultivated land,forest land and construction land were most stable,followed by unused land.Unused land,grassland and cultivated land experienced the most dramatic conversion and maximally affected by human activities.(2)The inter-annual difference between annual runoff and annual sediment load was significant.Compared with the annual sediment load,the trend of decreasing runoff was more obvious.The correlation coefficient of runoff-sediment was 0.67,representing a significant correlation.(3)There was a significant correlation between the landscape index and runoff-sediment.The runoff was negatively correlated with the largest patch index,patch cohesion index,aggregation index and contagion index,but positively correlated with landscape morphology index and landscape division index.And the sediment was negatively correlated with the contagion index,aggregation index and plaque cohesion index,but positively correlated with other landscape indexes.The results indicate that with the increase of the largest patch index,patch cohesion index and aggregation index,the rainfall infiltration capacity increase obviously and the soil erosion reduce significantly.Therefore,increasing the largest patch index,patch cohesion and aggregation index of the watershed landscape can enhance the function of water storage and soil conservation as well as ecological optimization in the windwater erosion crisscross region.The results can provide theoretical support for the ecological environment construction and comprehensive utilization of water and soil resources. 展开更多
关键词 Wind-water erosion crisscross region Landscape pattern RUNOFF SEDIMENT Xiliugou watershed
下载PDF
Estimation of water balance in the source region of the Yellow River based on GRACE satellite data 被引量:8
19
作者 Min XU BaiSheng YE +2 位作者 QiuDong ZHAO ShiQing ZHANG Jiang WANG 《Journal of Arid Land》 SCIE CSCD 2013年第3期384-395,共12页
Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents... Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff. 展开更多
关键词 actual evaporation GRACE satellite data water storage change water balance equation source region of the Yellow River
下载PDF
Potential of rooftop rainwater harvesting to meet outdoor water demand in arid regions
20
作者 Kazi TAMADDUN Ajay KALRA Sajjad AHMAD 《Journal of Arid Land》 SCIE CSCD 2018年第1期68-83,共16页
The feasibility of rooftop rainwater harvesting (RRWH) as an alternative source of water to meet the outdoor water demand in nine states of the U.S. was evaluated using a system dynamics model developed in Systems T... The feasibility of rooftop rainwater harvesting (RRWH) as an alternative source of water to meet the outdoor water demand in nine states of the U.S. was evaluated using a system dynamics model developed in Systems Thinking, Experimental Learning Laboratory with Animation. The state of Arizona was selected to evaluate the effects of the selected model parameters on the efficacy of RRWH since among the nine states the arid region of Arizona showed the least potential of meeting the outdoor water demand with rain harvested water. The analyses were conducted on a monthly basis across a 10-year projected period from 2015 to 2024. The results showed that RRWH as a potential source of water was highly sensitive to certain model parameters such as the outdoor water demand, the use of desert landscaping, and the percentage of existing houses with RRWH. A significant difference (as high as 37.5%) in rainwater potential was observed between the projected wet and dry climate conditions in Arizona. The analysis of the dynamics of the storage tanks suggested that a 1.0-2.0 m3 rainwater barrel, on an average, can store approximately 80% of the monthly rainwater generated from the rooftops in Arizona, even across the high seasonal variation. This interactive model can be used as a quick estimator of the amount of water that could be generated, stored, and utilized through RRWH systems in the U.S. under different climate conditions. The findings of such comprehensive analyses may help regional policymakers, especially in arid regions, to develop a sustainable water management infrastructure. 展开更多
关键词 rooftop rainwater harvesting rainwater storage tank dynamics sustainability of outdoor water usage sustainability of water in arid regions best management practices in arid regions variation of rainfall under variousclimate conditions
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部