This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a dis...This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.展开更多
Alternatives to the sectoral and public policies and regulations of environmental and water resources' protection, and the experiments of integrated management have been rapidly multiplied since the year 1990. Water ...Alternatives to the sectoral and public policies and regulations of environmental and water resources' protection, and the experiments of integrated management have been rapidly multiplied since the year 1990. Water constitutes a principal stake of these environmental policies in the majority of the countries and especially in the countries of North Africa as Algeria, where this resource is threatened by repeated dryness and by the impact of the climate change. The integrated water resource management reflects today the world tendency of the governments to exploit and preserve this resource by a way based on a process of governance, which passes by the dialog of diversified actors (various sectors). According to this policy and to the promulgation of the Algerian National Report on State effective implementation and coordination mechanisms are required. How this principle of integrated water management will be executed with various scenarios in Algeria and what are the main difficulties that can be met? Or, more exactly, what are the variables that can influence the operation of the local water process governorship? This analysis will be carried out through the example of the Wadi El K6bir watershed located in the northeast of Algeria, which is real natural area of water supply that feeds the communities, the natural and artificial basins, and preserves the perenniality of the existing natural ecosystems especially the one of the natural park classified by the United Nations Educational Scientific and Cultural Organization (U.N.E.S.C.O) in 1989 as the inheritance of humanity and six other sites classified according to the Ramsar convention as wetlands of international importance to be preserved.展开更多
This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the...This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the joint ground/surface water flows. Python scripts are implemented in Geographic Information System (GIS) to store, represent and take decisions on the simulated conditions related to the water resources management at the scale of the watershed. The proposed surface-subsurface model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach for surface flood routing. Infiltration rates, overland flows and evapotranspiration processes are considered by a diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The MELEF model (Modèle d’éLéments Fluides, in French) was adapted and calibrated during a period of five years (2008/ 2012) with the help of hydrological parameters, registered flow rates, water levels and registered precipitation, water uses and water management operations in surface and groundwater bodies. The results predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers, the flooding of the Meirama open pit and the local water balances for different hydrological components.展开更多
In the process of exploiting and using water resources of river basin, the benefit conflict problems among upper and lower river districts and among different departments restrict to sustainable exploiting and using w...In the process of exploiting and using water resources of river basin, the benefit conflict problems among upper and lower river districts and among different departments restrict to sustainable exploiting and using water resources of river basin. In this paper, the water resources conflict management of Nyabarongo River and Kagera River watershed is studied. The Nyabarongo is a major river in Rwanda, begins in Nyungwe Forest, and flows up to the north-western part of the country, then down through the center to the south-east, eventually forming the main tributary of the Kagera River watershed, the main affluent of Lake Victoria, which drains into the Nile River. The basin is shared among 11 riparian states. This trans-boundary character of the Nile presents a great challenge of water conflicts;national interests have historically been promoted at the expense of regional interests. The framework of this paper is as follows: the water resources bulletin is firstly described, and then the cooperation and regional conflicts are discussed;finally a sustainable framework for governing the water resources is proposed to meet water management in riparian states.展开更多
The present work applied the HydroGeoSphere (HGS) model in humid tropical area to Koué watershed scale to simulate flows in porous and fractured area of crystalline aquifers. It integrates rainfall, physiographic...The present work applied the HydroGeoSphere (HGS) model in humid tropical area to Koué watershed scale to simulate flows in porous and fractured area of crystalline aquifers. It integrates rainfall, physiographic, fractures, hydraulic drilling and hydrodynamic data. The simulation of flows in porous area concerned 5 test zones. The input database of the model is implemented on a triangular grid in porous area using Gridbuilder software and interactive block grid in fractured area. In order to use the model in these two environments, boundary condition was set. The infiltrations rate of the earth layers is estimated in the order to 10-5 ms-1. The model simulates the pumping with a good reproductivity of the drawdown profiles of groundwater at the drillings. The storage coefficients vary between 9.9 × 10-4 and 2 × 10-3. The hydraulic conductivities vary from 8.5 × 10-6 to 2 × 10-5. 73.9% of the drillings studied has a high hydraulic conductivity and shows a strong drawdown of the groundwater table. The study of the static levels of the ground water allowed indicating the distribution of the water resources in the drillings: 57% are deep in the first 10 meters, 36% between 10 and 20 m, and 7% in the higher level to 20 m deep in the earth.展开更多
Payments for ecosystem services (PES) have been created worldwide to assist watershed management and improve or maintain water quality. Considering their importance, we conducted a holistic review of payment for water...Payments for ecosystem services (PES) have been created worldwide to assist watershed management and improve or maintain water quality. Considering their importance, we conducted a holistic review of payment for water-related ecosystem services to understand how this instrument has been applied in watershed management worldwide. First, we identified the watershed management actions considered by the PES programs and the challenges of implementing water-related PES. After we identified the methods and criteria used to define priority areas for water-related PES. Our review considered articles published on the Web of Science from 2011 to 2022. We found 236 articles relating PES to water resources, highlighting the main water conservation strategies: native vegetation conservation, native vegetation restoration, and implementing best agricultural practices. The method most frequent was interview, followed by the use of technologies, document analysis, and hydrological models. Another significant result was that priority areas for receiving PES are mainly riparian zones, areas near or with native vegetation cover, areas with higher erosion potential, steep areas, and areas with socially vulnerable communities. This review was crucial to identify efficient water resource conservation strategies and potential challenges in the implementation and development of PES programs.展开更多
Authors have conducted an experiment of irradiation using sound waves (frequency) including ultrasonic waves into water such as drinking water, sea water and forest water and wastewater so far. As a result, almost the...Authors have conducted an experiment of irradiation using sound waves (frequency) including ultrasonic waves into water such as drinking water, sea water and forest water and wastewater so far. As a result, almost the same effect of improvement of water quality was confirmed for each sound wave. Then, an environmental anthropological study of watershed management based on the sound was carried out assuming that a water quality management using the sound could be possible. The Goulburn River basin in the southern part of Australia in which indigenous peoples (Yorta Yorta) have been concerned with the management for a long time so far was selected as an objective drainage basin this time. As a result, a couple of environmental anthropological perspectives on watershed management were proposed.展开更多
The water supply system in Shanghai provides about 2.55×109 m3/a,of which more than 50% is derived from the Upper Huangpu River Watershed. During the process of rapid urbanization and industrialization,the role o...The water supply system in Shanghai provides about 2.55×109 m3/a,of which more than 50% is derived from the Upper Huangpu River Watershed. During the process of rapid urbanization and industrialization,the role of watershed management in sustaining clean drinking water quality at surface sources is emphasized in Shanghai. This paper proposes an integrated watershed management (IWM) approach in the context of the current pressures and problems of source water protection at the Upper Huangpu River Watershed in Shanghai. Based on data sets of land use,water quality and regional development,multi-criteria analysis and system dynamics techniques were used to evaluate effectiveness and improve decision-making of source water protection at a watershed scale. Different scenarios for potential source water quality changing from 2008 to 2020 were predicted,based on a systematic analysis and system dynamics modeling,a watershed management approach integrating land use prioritization and stakeholder involvement was designed to conserve the source water quality. The integrated watershed management (IWM) approach may help local authorities better understand and address the complex source water system,and develop improved safe drinking water strategies to better balance urban expansion and source water protection.展开更多
In Jordan, Zarqa River Basin (ZRB) has been taken as a case study for applying water management models because of its limited water resources and due to the fact that the basin is dwelling with about 52% of Jordan’s ...In Jordan, Zarqa River Basin (ZRB) has been taken as a case study for applying water management models because of its limited water resources and due to the fact that the basin is dwelling with about 52% of Jordan’s population. The surface water resources are mainly used for agriculture because they are mixed with treated water and cannot be used for domestic purposes. This paper aims to demonstrate the contributions of Models in watershed management that provide indirect ways of assessing and confirming the success of models in water flow simulation. The method includes transferring the computed hydrologic parameters for Zarqa basin’s sub-catchments within Watershed Modeling System (WMS) into Water Resources Model (WRM) and HEC-1 models. Then the results of the HEC-1 and WRM models are compared according to their basin’s simulation with the real basin. The study includes description of the HEC-1, WRM models philosophy, the models representation, and simulation results and analysis of the Zarqa River Basin. Comparing the results of WRM and HEC-1 models proved their simulation efficiency in predicting the flow of Zarqa River Basin. Nevertheless, the philosophy of HEC-1 is a single storm event and is based on values of curve number, while WRM philosophy describes the water flow and availability, and demand and supply balance on a daily basis across the basin. The models’ predictions for the real flow definitely establish the modeling certainty and help the water resources’ developers to incorporate different basin features for watershed representation, simulation, and management. Hence, the certainty of the results in modeling provides indirect ways of assessing the success of models’ simulations.展开更多
Watershed management consists of multifunctional activities to manage and address the increasing water resource problems. Ever increasing water demand and rapidly depleting water resources, it has become necessary to ...Watershed management consists of multifunctional activities to manage and address the increasing water resource problems. Ever increasing water demand and rapidly depleting water resources, it has become necessary to develop the adaptation options to recharge groundwater resources. A watershed is a special kind of Common Pool Resources (CPRs);an area is defined by hydrological linkages where optimal management requires coordinating the use of natural resources by public participation. Watershed developments have shown significant positive impacts on water table, perennially of water in wells and water availability especially in semi-arid regions. This paper describes direct and indirect impacts of the watershed activities and benefits of hydrological services dealing with watershed management with future prediction of net irrigation water supply. In the present work, we have also discussed the multiple impacts of watershed of CPRs for improving groundwater and surface water resources.展开更多
A scheme for watershed protection and landscape enhancement(WPLE) by utilization of river water was proposed to renovate water resources and protect ecological environment in Qiongshan City, Hainan Province, China. Ut...A scheme for watershed protection and landscape enhancement(WPLE) by utilization of river water was proposed to renovate water resources and protect ecological environment in Qiongshan City, Hainan Province, China. Utilization of river water may diminish the drought and flood risks. The scheme is beneficial to solve the problems of water resources shortage, groundwater declines and saltwater intrusion in the watershed. The object of the WPLE scheme is to achieve a sustainable integrated development of environment, ecology, economy and society. A kind of physically beautiful and functionally vivid landscape may exert its synthetical function on the diversity of landscape and the enjoyment of inhabitants. Feasibility of the scheme will be demonstrated by more experiments and tests, as well as observations in a long term.展开更多
Implementation of payments for watershed services(PWS) has been regarded as a promising approach to coordinating the interests of upstream and downstream ecosystem services stakeholders. There is growing concern about...Implementation of payments for watershed services(PWS) has been regarded as a promising approach to coordinating the interests of upstream and downstream ecosystem services stakeholders. There is growing concern about whether PWS programs have achieved their original environmental goals of improving water quality and quantity, as well as the ancillary objective of increasing the welfare of local people. We start with an overview of PWS schemes and focus on their particularity and implementation mechanisms in China. We proceed to review 62 active PWS cases and examine their environmental performance in detail. The resulting findings show that PWS schemes have been able to reduce water pollution to some extent by establishing collaborative upstream/downstream watershed management policies, thereby improving water quality and quantity, as well as by making government officials more responsible for water resource management. In addition, their continued effectiveness in light of present challenges such as water-quality data availability is discussed. Chinese PWS schemes and their implementation mechanisms also provide information useful in monitoring environmental outcomes and guiding future designs of PWS programs in other regions.展开更多
The objective of this study was to assess the contribution of the spatial organization of cropping systems and the physicochemical properties of surface layers of the agricultural zones soils in tropical hydrosystems ...The objective of this study was to assess the contribution of the spatial organization of cropping systems and the physicochemical properties of surface layers of the agricultural zones soils in tropical hydrosystems to the spatial availability of nitrogen and pesticides during the wet season, such as the Béré watershed (BW) in C<span style="white-space:nowrap;">?</span>te d’Ivoire. For this purpose, after mapping the spatial distribution of the BW cropping systems based on the likelihood classification methodology of satellite images of the study area, 27 samples from the 0 - 20 cm horizon of the soil surface layers of the agricultural areas were taken during the wet and agricultural season of the year 2016. The Kjeldahl method has been used to evaluate the total nitrogen concentration and high-performance liquid chromatography (HPLC) chain made it possible for the analysis of pesticide residues in the soil solutions. Geostatistical analysis and processing of spatial data and physicochemical and agrochemical soil parameters revealed that two major agricultural areas stand out in the BW, namely the Béré upstream watershed (BUW) dominated at 32.65% by annual croppings (maize, cotton, rainfed or lowland rice, market gardening, etc.) and the Béré downstream watershed (BDW) by large areas of perennial croppings (cashew nuts, cocoa, etc.), <em>i.e.</em> 21.47%. Agricultural soils in BW are usually of the moderately desaturated ferralitic type with a low acid pH and a quite strong temperature, such as those of tropical soils’ characteristics. However, agricultural soils in the BUW are characterized by higher proportions of sand and coarse sand. The parameters such as total porosity, cation exchange capacity, clay, organic matter, silt, fine silt, coarse silt, and potassium ions, are higher in the soils of the agricultural area of the BDW. Moreover, soils in the agricultural areas of the BUW are less rich in total nitrogen (0.84 g<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) in contrast to those of the BDW (1.2 g<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>). On the other hand, the median concentrations of total pesticides remain very high in the BUW (193.80 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) in front of those of the BDW (94.81 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>). In addition, the biological family of herbicides was the most notable in BW. The chemical families of triazines (100% detection;79.37 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) are the most important in the agricultural area of the BUW with the very significant presence of active molecules of pesticides such as simazine (92.86% detection;13.17 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>). However, in the BDW, urea substitute (100% detection;44.02 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) dominate, including the active substance chlortoluron (84.62% detection;10.12 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>). The presence and abundance of nitrogen and pesticides in the soils of the agricultural areas of BW are strongly linked to the intensive use of these agrochemicals in cropping systems in recent decades in West African countries, even though most of the active molecules found are forbidden in several countries, especially in European countries. These are applied to tropical agricultural soils with physicochemical characteristics favorable to their retention in wet weather, as confirmed by the case of BW’s agricultural soils. Therefore, the BW’s water resources present worrying risks of contamination during rainy events that deserve to be assessed and monitored. Hence the need to take mitigating measures to this effect in order to preserve the quality of the environment.展开更多
The Sefrou watershed, located in the northern part of the Tabular Middle Atlas, is the primary watershed in the Sebou region. Due to increasing socio-economic development, the need for a stable water supply is critica...The Sefrou watershed, located in the northern part of the Tabular Middle Atlas, is the primary watershed in the Sebou region. Due to increasing socio-economic development, the need for a stable water supply is critical. Therefore, this watershed’s physiography and morphology are studied to aim and facilitate further research in the Sebou region. We rely on the hydrological regime, frequency analysis of extreme flows, rainfall volume, and flood periods forecast to enable that characterization. Our findings determined that the Sebou region is of pluvial type with abundant rainfall, especially in winters due to floods. Moreover, substratum parameters induce a large volume of water resources from upstream to downstream. However, the weak structure of the hydrographic network and the water balance ha<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> highlighted a considerable loss of these resources, which handicaps the irrigation system and the supply of drinking water to the region’s cities. Finally, the annual modulus and the different coefficients show hydroclimatic fluctuations of semi-arid climatic conditions, with a temperate winter. Our results suggest a need to monitor water runoff and protect surface soils from flooding and rapid erosion (by planting trees). We also propose installing barriers and a small dam to recharge groundwater and artificially store surface water in this watershed.</span></span></span>展开更多
This study is an evaluation of the water potential of the Ferlo fossil valley in the Louga area in Senegal. It consisted in determining the volume of water that could be mobilized at the level of a confluence point of...This study is an evaluation of the water potential of the Ferlo fossil valley in the Louga area in Senegal. It consisted in determining the volume of water that could be mobilized at the level of a confluence point of the waters according to the flow lines, where a dam would be placed to create a reservoir. This volume of mobilizable water was compared to the average water consumption of the area in order to evaluate its adequacy or not. To do this, a delineation, physical characterization and mapping of the Ferlo watershed was done using Google Earth, Global Mapper and Arc GIS softwares. A catchment area of 28,754 sq·km was obtained with a perimeter of 976 km, an average slope of 0.52% and a hydraulic length of 336 km. Then the decennial runoff of the watershed was calculated using the CIEH method, this flow is estimated at 1120 cm/s. On the basis of this flow, the annual volume of water that can be mobilized was estimated at 11,089,758 cm per year with a solid deposits of 93 cm per year. The conclusions reached are that there is a lack of mobilizable water resources in the area and that the entire fossil valley needs to be rewatered to provide a sustainable alternative water source.展开更多
The Nkoup watershed(10°35’-10°47’E and 5°27’-5°42’N)is a volcanic zone situated in Nun Plain West Cameroon.The high fertility of the soils makes it a strategic agropastoral area where wat...The Nkoup watershed(10°35’-10°47’E and 5°27’-5°42’N)is a volcanic zone situated in Nun Plain West Cameroon.The high fertility of the soils makes it a strategic agropastoral area where water resources are heavily exploited and used for several purposes.Due to human activities,soils and water resources are deteriorating,giving birth to water pollution and hydromorphological hazards.This work aims to determine the hydromorphometric parameters of the Nkoup watershed so that the data obtained help in the sustainable management of water resources and conservation of soil.To achieve this aim,various data were collected from DEM dataset derived from SRTM and processed in specialized software(QGIS and ArGIS).The simplified hydrological balance was calculated using the upstream approach.The Nkoup watershed has:Axial length L_(ax)=25.8 km,Axial Width W_(ax)=11.1 km,Perimeter P=132.6 km,Area A=173.7 km^(2),Average Altitude Ha=1726.3 m,Compactness Index Icomp=2.8,Relief ratio Rr=3.9 m/km,Circularity ratio Rc=0.1,Elongation ratio R=0.1,Drainage texture ratio Rt=0.6,Drainage density Dd=0.5 km/km^(2).Stream Frequency Fs=0.4,Channel Sinuosity Index CSI=0.8,Stream gradient Sg=0.6 and global slope Index Ig=6.8 m/km.The specific height Difference Ds=89.4 m shows moderate relief.The precipitation and evapotranspiration are unevenly distributed.With P=187.7 mm/an,ETP=953.4 mm/an,Q=4.2 m3/s,R=762.5 mm/an,ETR=832.3 mm/an and I=282.9 mm/an.The Nkoup,36.9 km long,has a sinuous aspect due to the low slope and the high CSI.The piezometric levels vary according to the seasons and the groundwater flow follows the N-S direction as surface flow.展开更多
Classification of groundwater conditions at the watershed scale synthesizes landscape hydrology, provides a mapped summary of groundwater resources, and supports water management decisions. The application of a recent...Classification of groundwater conditions at the watershed scale synthesizes landscape hydrology, provides a mapped summary of groundwater resources, and supports water management decisions. The application of a recently developed watershed-scale groundwater classification methodology is applied and evaluated in the 100,000 hectare lower Ruby Valley watershed of southwestern Montana. The geologic setting, groundwater flow direction, aquifer productivity, water quality, anthropogenic impact to water levels, depth to groundwater, and the degree of connection between groundwater and surface water are key components of the classification scheme. This work describes the hydrogeology of the lower Ruby Valley watershed and illustrates how the classification system is applied to assemble, analyze, and summarize groundwater data. The classification process provides information in summary tables and maps of seamless digital overlays prepared using geographical information system (GIS) software. Groundwater conditions in the watershed are classified as low production bedrock aquifers in the mountainous uplands that recharge the moderate productivity basin-fill sediments. Groundwater levels approach the surface near the Ruby River resulting in sufficient groundwater discharge to maintain stream flow during dry, late summer conditions. The resulting classification data sets provide watershed managers with a standardized organizational tool that represents groundwater conditions at the watershed scale.展开更多
The Delaware River watershed provides drinking water to over 15 million people, critical habitat for plants and animals, including many threatened and endangered species, and recreational and economic enterprise value...The Delaware River watershed provides drinking water to over 15 million people, critical habitat for plants and animals, including many threatened and endangered species, and recreational and economic enterprise valued at $10 billion per year in direct wages. Water quality and associated economic, environmental and social values have improved dramatically since the 1950s when the lower portion of the river was declared a dead zone during parts of the summer due to excessive inputs of domestic and industrial waste. The question today is how to ensure that progress continues in the face of persistent and growing threats to water quality. Recognizing the challenges facing the watershed, over 40 of the leading conservation groups in this 13,000 square mile region are pursuing a 10-year strategic initiative focused on water quality through the Delaware River Watershed Initiative, a conservation program advancing a combination of place-based work in watershed protection, restoration, education, collaboration and innovation through collective impact. This paper serves as an invitation for broader strategic involvement to accelerate watershed protection and restoration;it also is a springboard for stakeholders to set an agenda for ensuring that the Delaware River watershed delivers clean water for humans, plants and animals. The paper identifies eight “clusters” of sub-watersheds, constituting approximately 25 percent of the total Delaware Basin, where analysis has shown that investment in water quality could deliver significant returns. Diverse geology, land use, development patterns, population density and en-vironmental stressors are present throughout these sub-watershed clusters. Focusing conservation actions in these places contributes directly to local water quality, and by fostering experimentation and innovation, it also cultivates a wide range of effective approaches for scaling up investment across the Delaware River watershed and beyond. This paper emphasizes five strategies for investing in protection of high quality waters and restoration of impaired waters: 1. protect forested headwaters to maintain high water quality;2. manage agricultural lands to reduce polluted runoff and increase groundwater infiltration;3. implement best practices and new financial incentives to reduce urban stormwater pollution through natural processes;4. increase the evidence base for watershed protection by monitoring trends in water quality and assessing project impacts;5. improve policy and practice through applied research focused on water quality outcomes. These strategies demand place-based work, and the Delawre River Watershed Initiative will focus on advancing these efforts through the cooperation of organizations located in the eight distinct watershed clusters. Proceeding downstream from the headwaters, the eight landscapes are: Pocono Mountains and Kittatinny Ridge;New Jersey Highlands;Upper Lehigh River;Middle Schuylkill River;Schuylkill Highlands;Brandywine and Christina Rivers Upstream;Suburban Philadelphia;and Kirkwood-Cohansey Aquifer (comprising New Jersey’s Bayshore;and Pine Barrens). These clusters bring together many of the most ecologically valuable and significantly impaired areas of the watershed. They are strategically located where strong organizations and critical natural vatues provide measurable opportunities for advancing local water quality while having regional impact. The selection of areas and strategies was based on research and planning undertaken by the Open Space Institute (OSI) and the Academy of Natural Sciences of Drexel University (ANSDU} with support from the William Penn Foundation. Researchers at OSI and ANSDU were joined by the National Fish and Wildlfe Foundation (NFWF) in engaging over 40 organizations working across the eight sub-watershed clusters to develop collaborative plans for implementing and measuring local conservation strategies essential to the long-term health and vibrancy of the region. These implementation plans tackle major threats to water quality and include strategies to track progress and share lessons learned. The plans provide a framework for public agencies and philanthropic funders seeking to pursue targeted watershed protection outcomes supported by monitoring, technical assistance and ongoing communications. Organizations large and small, public and private, are invited to read this paper and consider this program as an opportunity to align investment for greater impact and help ensure a bright future for the Delaware River watershed.展开更多
Demand for water increases in Samendeni regarding the undertaken agricultural projects while pressure on surface water from global warming/evapotranspiration also increases. Thus, the need to evaluate the groundwater ...Demand for water increases in Samendeni regarding the undertaken agricultural projects while pressure on surface water from global warming/evapotranspiration also increases. Thus, the need to evaluate the groundwater potential in the catchment is crucial as alternative supplier of water and resilience to climate hazards. The AHP was performed integrating ten influencing factors such as geomorphology, geology, soil, land use/land cover (lulc), slope, rainfall, drainage density, borehole rate & depth and piezometric level to generate groundwater potential zones (GWPZs) in Samendeni watershed (4420 km<sup>2</sup>). All the factors were processed and ranged into five (5) classes. Weight was assigned to each class of thematic layer. These thematic layers were then reclassified based on the normalized weight to be used in the calculation of groundwater potential zones (GWPZ). The final output, groundwater potential map, revealed a significant groundwater potential with very good (11%), good (31%), moderate (30%), poor (20%), and very poor (8%) of proportion. The interesting (very good, good) GWPZs in the study area are mostly in the central towards the east. The poor zones in term of groundwater potential are concentrated in the upper west region of the watershed. Besides the cross-validation with the relationship between different groundwater potential zones and the wells available in the study area, the overall accuracy was estimated to 88% provided from the result of the similarity analysis where 22 out of the 25 validation wells match with the expected yield classes of GWPZs. The statistics from that validation revealed the performance of AHP method to delineate groundwater potential zones at catchment level.展开更多
Watershed prioritization is considered as the most significant aspect in watershed resource management and development program. The present work attempts to prioritize seventeen sub-watersheds in Ruparel watershed of ...Watershed prioritization is considered as the most significant aspect in watershed resource management and development program. The present work attempts to prioritize seventeen sub-watersheds in Ruparel watershed of Alwar district of Rajasthan, India. For prioritization of sub-watersheds, morphometric and land use/land cover (LULC) analysis were performed using remote sensing and GIS. Base map of the study area has been derived from SOI toposheet on 1:50,000 scale whereas LULC mapping was done using IRS P6 LISS III data. Standard methods for drainage morphometry have been followed for computing morphometric parameters such as linear and shape for seventeen sub-watersheds and allotted ranks based on their relationship with erodibility and a compound value has been calculated for final ranking. Five main LULC categories were computed and were assigned priority ranks and subsequently a compound parameter was determined for final ranking. Integration of both morphometric and LULC results reveal that SBW5, SBW7, SBW12 and SBW16 are the common sub-watersheds that fall under high priority, SBW3 falls under Medium category and SBW11 comes under low priority. The results of the analysis can be used to identify the sub-watersheds which need immediate restoration and will eventually help in watershed resource management for sustainable development.展开更多
基金supported by the National Basic Research Program of China(2010CB951002)the Dr.Western-funded Project of Chinese Academy of Science(XBBS201010 and XBBS201005)+1 种基金the National Natural Sciences Foundation of China (51190095)the Open Research Fund Program of State Key Laboratory of Hydro-science and Engineering(sklhse-2012-A03)
文摘This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.
文摘Alternatives to the sectoral and public policies and regulations of environmental and water resources' protection, and the experiments of integrated management have been rapidly multiplied since the year 1990. Water constitutes a principal stake of these environmental policies in the majority of the countries and especially in the countries of North Africa as Algeria, where this resource is threatened by repeated dryness and by the impact of the climate change. The integrated water resource management reflects today the world tendency of the governments to exploit and preserve this resource by a way based on a process of governance, which passes by the dialog of diversified actors (various sectors). According to this policy and to the promulgation of the Algerian National Report on State effective implementation and coordination mechanisms are required. How this principle of integrated water management will be executed with various scenarios in Algeria and what are the main difficulties that can be met? Or, more exactly, what are the variables that can influence the operation of the local water process governorship? This analysis will be carried out through the example of the Wadi El K6bir watershed located in the northeast of Algeria, which is real natural area of water supply that feeds the communities, the natural and artificial basins, and preserves the perenniality of the existing natural ecosystems especially the one of the natural park classified by the United Nations Educational Scientific and Cultural Organization (U.N.E.S.C.O) in 1989 as the inheritance of humanity and six other sites classified according to the Ramsar convention as wetlands of international importance to be preserved.
文摘This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the joint ground/surface water flows. Python scripts are implemented in Geographic Information System (GIS) to store, represent and take decisions on the simulated conditions related to the water resources management at the scale of the watershed. The proposed surface-subsurface model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach for surface flood routing. Infiltration rates, overland flows and evapotranspiration processes are considered by a diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The MELEF model (Modèle d’éLéments Fluides, in French) was adapted and calibrated during a period of five years (2008/ 2012) with the help of hydrological parameters, registered flow rates, water levels and registered precipitation, water uses and water management operations in surface and groundwater bodies. The results predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers, the flooding of the Meirama open pit and the local water balances for different hydrological components.
文摘In the process of exploiting and using water resources of river basin, the benefit conflict problems among upper and lower river districts and among different departments restrict to sustainable exploiting and using water resources of river basin. In this paper, the water resources conflict management of Nyabarongo River and Kagera River watershed is studied. The Nyabarongo is a major river in Rwanda, begins in Nyungwe Forest, and flows up to the north-western part of the country, then down through the center to the south-east, eventually forming the main tributary of the Kagera River watershed, the main affluent of Lake Victoria, which drains into the Nile River. The basin is shared among 11 riparian states. This trans-boundary character of the Nile presents a great challenge of water conflicts;national interests have historically been promoted at the expense of regional interests. The framework of this paper is as follows: the water resources bulletin is firstly described, and then the cooperation and regional conflicts are discussed;finally a sustainable framework for governing the water resources is proposed to meet water management in riparian states.
文摘The present work applied the HydroGeoSphere (HGS) model in humid tropical area to Koué watershed scale to simulate flows in porous and fractured area of crystalline aquifers. It integrates rainfall, physiographic, fractures, hydraulic drilling and hydrodynamic data. The simulation of flows in porous area concerned 5 test zones. The input database of the model is implemented on a triangular grid in porous area using Gridbuilder software and interactive block grid in fractured area. In order to use the model in these two environments, boundary condition was set. The infiltrations rate of the earth layers is estimated in the order to 10-5 ms-1. The model simulates the pumping with a good reproductivity of the drawdown profiles of groundwater at the drillings. The storage coefficients vary between 9.9 × 10-4 and 2 × 10-3. The hydraulic conductivities vary from 8.5 × 10-6 to 2 × 10-5. 73.9% of the drillings studied has a high hydraulic conductivity and shows a strong drawdown of the groundwater table. The study of the static levels of the ground water allowed indicating the distribution of the water resources in the drillings: 57% are deep in the first 10 meters, 36% between 10 and 20 m, and 7% in the higher level to 20 m deep in the earth.
文摘Payments for ecosystem services (PES) have been created worldwide to assist watershed management and improve or maintain water quality. Considering their importance, we conducted a holistic review of payment for water-related ecosystem services to understand how this instrument has been applied in watershed management worldwide. First, we identified the watershed management actions considered by the PES programs and the challenges of implementing water-related PES. After we identified the methods and criteria used to define priority areas for water-related PES. Our review considered articles published on the Web of Science from 2011 to 2022. We found 236 articles relating PES to water resources, highlighting the main water conservation strategies: native vegetation conservation, native vegetation restoration, and implementing best agricultural practices. The method most frequent was interview, followed by the use of technologies, document analysis, and hydrological models. Another significant result was that priority areas for receiving PES are mainly riparian zones, areas near or with native vegetation cover, areas with higher erosion potential, steep areas, and areas with socially vulnerable communities. This review was crucial to identify efficient water resource conservation strategies and potential challenges in the implementation and development of PES programs.
文摘Authors have conducted an experiment of irradiation using sound waves (frequency) including ultrasonic waves into water such as drinking water, sea water and forest water and wastewater so far. As a result, almost the same effect of improvement of water quality was confirmed for each sound wave. Then, an environmental anthropological study of watershed management based on the sound was carried out assuming that a water quality management using the sound could be possible. The Goulburn River basin in the southern part of Australia in which indigenous peoples (Yorta Yorta) have been concerned with the management for a long time so far was selected as an objective drainage basin this time. As a result, a couple of environmental anthropological perspectives on watershed management were proposed.
基金Project(70603013) supported by the National Natural Science Foundation of ChinaProjects(08JC1408800,08JC1417602) supported by Key Program for Basic Research of Shanghai,China
文摘The water supply system in Shanghai provides about 2.55×109 m3/a,of which more than 50% is derived from the Upper Huangpu River Watershed. During the process of rapid urbanization and industrialization,the role of watershed management in sustaining clean drinking water quality at surface sources is emphasized in Shanghai. This paper proposes an integrated watershed management (IWM) approach in the context of the current pressures and problems of source water protection at the Upper Huangpu River Watershed in Shanghai. Based on data sets of land use,water quality and regional development,multi-criteria analysis and system dynamics techniques were used to evaluate effectiveness and improve decision-making of source water protection at a watershed scale. Different scenarios for potential source water quality changing from 2008 to 2020 were predicted,based on a systematic analysis and system dynamics modeling,a watershed management approach integrating land use prioritization and stakeholder involvement was designed to conserve the source water quality. The integrated watershed management (IWM) approach may help local authorities better understand and address the complex source water system,and develop improved safe drinking water strategies to better balance urban expansion and source water protection.
文摘In Jordan, Zarqa River Basin (ZRB) has been taken as a case study for applying water management models because of its limited water resources and due to the fact that the basin is dwelling with about 52% of Jordan’s population. The surface water resources are mainly used for agriculture because they are mixed with treated water and cannot be used for domestic purposes. This paper aims to demonstrate the contributions of Models in watershed management that provide indirect ways of assessing and confirming the success of models in water flow simulation. The method includes transferring the computed hydrologic parameters for Zarqa basin’s sub-catchments within Watershed Modeling System (WMS) into Water Resources Model (WRM) and HEC-1 models. Then the results of the HEC-1 and WRM models are compared according to their basin’s simulation with the real basin. The study includes description of the HEC-1, WRM models philosophy, the models representation, and simulation results and analysis of the Zarqa River Basin. Comparing the results of WRM and HEC-1 models proved their simulation efficiency in predicting the flow of Zarqa River Basin. Nevertheless, the philosophy of HEC-1 is a single storm event and is based on values of curve number, while WRM philosophy describes the water flow and availability, and demand and supply balance on a daily basis across the basin. The models’ predictions for the real flow definitely establish the modeling certainty and help the water resources’ developers to incorporate different basin features for watershed representation, simulation, and management. Hence, the certainty of the results in modeling provides indirect ways of assessing the success of models’ simulations.
文摘Watershed management consists of multifunctional activities to manage and address the increasing water resource problems. Ever increasing water demand and rapidly depleting water resources, it has become necessary to develop the adaptation options to recharge groundwater resources. A watershed is a special kind of Common Pool Resources (CPRs);an area is defined by hydrological linkages where optimal management requires coordinating the use of natural resources by public participation. Watershed developments have shown significant positive impacts on water table, perennially of water in wells and water availability especially in semi-arid regions. This paper describes direct and indirect impacts of the watershed activities and benefits of hydrological services dealing with watershed management with future prediction of net irrigation water supply. In the present work, we have also discussed the multiple impacts of watershed of CPRs for improving groundwater and surface water resources.
文摘A scheme for watershed protection and landscape enhancement(WPLE) by utilization of river water was proposed to renovate water resources and protect ecological environment in Qiongshan City, Hainan Province, China. Utilization of river water may diminish the drought and flood risks. The scheme is beneficial to solve the problems of water resources shortage, groundwater declines and saltwater intrusion in the watershed. The object of the WPLE scheme is to achieve a sustainable integrated development of environment, ecology, economy and society. A kind of physically beautiful and functionally vivid landscape may exert its synthetical function on the diversity of landscape and the enjoyment of inhabitants. Feasibility of the scheme will be demonstrated by more experiments and tests, as well as observations in a long term.
基金Under the auspices of National Natural Science Foundation of China(No.71203200,41671455)National Science and Technology Platform Construction Project(No.2005DKA32300)Major Research Projects of the Ministry of Education(No.16JJD770019)
文摘Implementation of payments for watershed services(PWS) has been regarded as a promising approach to coordinating the interests of upstream and downstream ecosystem services stakeholders. There is growing concern about whether PWS programs have achieved their original environmental goals of improving water quality and quantity, as well as the ancillary objective of increasing the welfare of local people. We start with an overview of PWS schemes and focus on their particularity and implementation mechanisms in China. We proceed to review 62 active PWS cases and examine their environmental performance in detail. The resulting findings show that PWS schemes have been able to reduce water pollution to some extent by establishing collaborative upstream/downstream watershed management policies, thereby improving water quality and quantity, as well as by making government officials more responsible for water resource management. In addition, their continued effectiveness in light of present challenges such as water-quality data availability is discussed. Chinese PWS schemes and their implementation mechanisms also provide information useful in monitoring environmental outcomes and guiding future designs of PWS programs in other regions.
文摘The objective of this study was to assess the contribution of the spatial organization of cropping systems and the physicochemical properties of surface layers of the agricultural zones soils in tropical hydrosystems to the spatial availability of nitrogen and pesticides during the wet season, such as the Béré watershed (BW) in C<span style="white-space:nowrap;">?</span>te d’Ivoire. For this purpose, after mapping the spatial distribution of the BW cropping systems based on the likelihood classification methodology of satellite images of the study area, 27 samples from the 0 - 20 cm horizon of the soil surface layers of the agricultural areas were taken during the wet and agricultural season of the year 2016. The Kjeldahl method has been used to evaluate the total nitrogen concentration and high-performance liquid chromatography (HPLC) chain made it possible for the analysis of pesticide residues in the soil solutions. Geostatistical analysis and processing of spatial data and physicochemical and agrochemical soil parameters revealed that two major agricultural areas stand out in the BW, namely the Béré upstream watershed (BUW) dominated at 32.65% by annual croppings (maize, cotton, rainfed or lowland rice, market gardening, etc.) and the Béré downstream watershed (BDW) by large areas of perennial croppings (cashew nuts, cocoa, etc.), <em>i.e.</em> 21.47%. Agricultural soils in BW are usually of the moderately desaturated ferralitic type with a low acid pH and a quite strong temperature, such as those of tropical soils’ characteristics. However, agricultural soils in the BUW are characterized by higher proportions of sand and coarse sand. The parameters such as total porosity, cation exchange capacity, clay, organic matter, silt, fine silt, coarse silt, and potassium ions, are higher in the soils of the agricultural area of the BDW. Moreover, soils in the agricultural areas of the BUW are less rich in total nitrogen (0.84 g<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) in contrast to those of the BDW (1.2 g<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>). On the other hand, the median concentrations of total pesticides remain very high in the BUW (193.80 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) in front of those of the BDW (94.81 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>). In addition, the biological family of herbicides was the most notable in BW. The chemical families of triazines (100% detection;79.37 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) are the most important in the agricultural area of the BUW with the very significant presence of active molecules of pesticides such as simazine (92.86% detection;13.17 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>). However, in the BDW, urea substitute (100% detection;44.02 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>) dominate, including the active substance chlortoluron (84.62% detection;10.12 μg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>). The presence and abundance of nitrogen and pesticides in the soils of the agricultural areas of BW are strongly linked to the intensive use of these agrochemicals in cropping systems in recent decades in West African countries, even though most of the active molecules found are forbidden in several countries, especially in European countries. These are applied to tropical agricultural soils with physicochemical characteristics favorable to their retention in wet weather, as confirmed by the case of BW’s agricultural soils. Therefore, the BW’s water resources present worrying risks of contamination during rainy events that deserve to be assessed and monitored. Hence the need to take mitigating measures to this effect in order to preserve the quality of the environment.
文摘The Sefrou watershed, located in the northern part of the Tabular Middle Atlas, is the primary watershed in the Sebou region. Due to increasing socio-economic development, the need for a stable water supply is critical. Therefore, this watershed’s physiography and morphology are studied to aim and facilitate further research in the Sebou region. We rely on the hydrological regime, frequency analysis of extreme flows, rainfall volume, and flood periods forecast to enable that characterization. Our findings determined that the Sebou region is of pluvial type with abundant rainfall, especially in winters due to floods. Moreover, substratum parameters induce a large volume of water resources from upstream to downstream. However, the weak structure of the hydrographic network and the water balance ha<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> highlighted a considerable loss of these resources, which handicaps the irrigation system and the supply of drinking water to the region’s cities. Finally, the annual modulus and the different coefficients show hydroclimatic fluctuations of semi-arid climatic conditions, with a temperate winter. Our results suggest a need to monitor water runoff and protect surface soils from flooding and rapid erosion (by planting trees). We also propose installing barriers and a small dam to recharge groundwater and artificially store surface water in this watershed.</span></span></span>
文摘This study is an evaluation of the water potential of the Ferlo fossil valley in the Louga area in Senegal. It consisted in determining the volume of water that could be mobilized at the level of a confluence point of the waters according to the flow lines, where a dam would be placed to create a reservoir. This volume of mobilizable water was compared to the average water consumption of the area in order to evaluate its adequacy or not. To do this, a delineation, physical characterization and mapping of the Ferlo watershed was done using Google Earth, Global Mapper and Arc GIS softwares. A catchment area of 28,754 sq·km was obtained with a perimeter of 976 km, an average slope of 0.52% and a hydraulic length of 336 km. Then the decennial runoff of the watershed was calculated using the CIEH method, this flow is estimated at 1120 cm/s. On the basis of this flow, the annual volume of water that can be mobilized was estimated at 11,089,758 cm per year with a solid deposits of 93 cm per year. The conclusions reached are that there is a lack of mobilizable water resources in the area and that the entire fossil valley needs to be rewatered to provide a sustainable alternative water source.
文摘The Nkoup watershed(10°35’-10°47’E and 5°27’-5°42’N)is a volcanic zone situated in Nun Plain West Cameroon.The high fertility of the soils makes it a strategic agropastoral area where water resources are heavily exploited and used for several purposes.Due to human activities,soils and water resources are deteriorating,giving birth to water pollution and hydromorphological hazards.This work aims to determine the hydromorphometric parameters of the Nkoup watershed so that the data obtained help in the sustainable management of water resources and conservation of soil.To achieve this aim,various data were collected from DEM dataset derived from SRTM and processed in specialized software(QGIS and ArGIS).The simplified hydrological balance was calculated using the upstream approach.The Nkoup watershed has:Axial length L_(ax)=25.8 km,Axial Width W_(ax)=11.1 km,Perimeter P=132.6 km,Area A=173.7 km^(2),Average Altitude Ha=1726.3 m,Compactness Index Icomp=2.8,Relief ratio Rr=3.9 m/km,Circularity ratio Rc=0.1,Elongation ratio R=0.1,Drainage texture ratio Rt=0.6,Drainage density Dd=0.5 km/km^(2).Stream Frequency Fs=0.4,Channel Sinuosity Index CSI=0.8,Stream gradient Sg=0.6 and global slope Index Ig=6.8 m/km.The specific height Difference Ds=89.4 m shows moderate relief.The precipitation and evapotranspiration are unevenly distributed.With P=187.7 mm/an,ETP=953.4 mm/an,Q=4.2 m3/s,R=762.5 mm/an,ETR=832.3 mm/an and I=282.9 mm/an.The Nkoup,36.9 km long,has a sinuous aspect due to the low slope and the high CSI.The piezometric levels vary according to the seasons and the groundwater flow follows the N-S direction as surface flow.
文摘Classification of groundwater conditions at the watershed scale synthesizes landscape hydrology, provides a mapped summary of groundwater resources, and supports water management decisions. The application of a recently developed watershed-scale groundwater classification methodology is applied and evaluated in the 100,000 hectare lower Ruby Valley watershed of southwestern Montana. The geologic setting, groundwater flow direction, aquifer productivity, water quality, anthropogenic impact to water levels, depth to groundwater, and the degree of connection between groundwater and surface water are key components of the classification scheme. This work describes the hydrogeology of the lower Ruby Valley watershed and illustrates how the classification system is applied to assemble, analyze, and summarize groundwater data. The classification process provides information in summary tables and maps of seamless digital overlays prepared using geographical information system (GIS) software. Groundwater conditions in the watershed are classified as low production bedrock aquifers in the mountainous uplands that recharge the moderate productivity basin-fill sediments. Groundwater levels approach the surface near the Ruby River resulting in sufficient groundwater discharge to maintain stream flow during dry, late summer conditions. The resulting classification data sets provide watershed managers with a standardized organizational tool that represents groundwater conditions at the watershed scale.
文摘The Delaware River watershed provides drinking water to over 15 million people, critical habitat for plants and animals, including many threatened and endangered species, and recreational and economic enterprise valued at $10 billion per year in direct wages. Water quality and associated economic, environmental and social values have improved dramatically since the 1950s when the lower portion of the river was declared a dead zone during parts of the summer due to excessive inputs of domestic and industrial waste. The question today is how to ensure that progress continues in the face of persistent and growing threats to water quality. Recognizing the challenges facing the watershed, over 40 of the leading conservation groups in this 13,000 square mile region are pursuing a 10-year strategic initiative focused on water quality through the Delaware River Watershed Initiative, a conservation program advancing a combination of place-based work in watershed protection, restoration, education, collaboration and innovation through collective impact. This paper serves as an invitation for broader strategic involvement to accelerate watershed protection and restoration;it also is a springboard for stakeholders to set an agenda for ensuring that the Delaware River watershed delivers clean water for humans, plants and animals. The paper identifies eight “clusters” of sub-watersheds, constituting approximately 25 percent of the total Delaware Basin, where analysis has shown that investment in water quality could deliver significant returns. Diverse geology, land use, development patterns, population density and en-vironmental stressors are present throughout these sub-watershed clusters. Focusing conservation actions in these places contributes directly to local water quality, and by fostering experimentation and innovation, it also cultivates a wide range of effective approaches for scaling up investment across the Delaware River watershed and beyond. This paper emphasizes five strategies for investing in protection of high quality waters and restoration of impaired waters: 1. protect forested headwaters to maintain high water quality;2. manage agricultural lands to reduce polluted runoff and increase groundwater infiltration;3. implement best practices and new financial incentives to reduce urban stormwater pollution through natural processes;4. increase the evidence base for watershed protection by monitoring trends in water quality and assessing project impacts;5. improve policy and practice through applied research focused on water quality outcomes. These strategies demand place-based work, and the Delawre River Watershed Initiative will focus on advancing these efforts through the cooperation of organizations located in the eight distinct watershed clusters. Proceeding downstream from the headwaters, the eight landscapes are: Pocono Mountains and Kittatinny Ridge;New Jersey Highlands;Upper Lehigh River;Middle Schuylkill River;Schuylkill Highlands;Brandywine and Christina Rivers Upstream;Suburban Philadelphia;and Kirkwood-Cohansey Aquifer (comprising New Jersey’s Bayshore;and Pine Barrens). These clusters bring together many of the most ecologically valuable and significantly impaired areas of the watershed. They are strategically located where strong organizations and critical natural vatues provide measurable opportunities for advancing local water quality while having regional impact. The selection of areas and strategies was based on research and planning undertaken by the Open Space Institute (OSI) and the Academy of Natural Sciences of Drexel University (ANSDU} with support from the William Penn Foundation. Researchers at OSI and ANSDU were joined by the National Fish and Wildlfe Foundation (NFWF) in engaging over 40 organizations working across the eight sub-watershed clusters to develop collaborative plans for implementing and measuring local conservation strategies essential to the long-term health and vibrancy of the region. These implementation plans tackle major threats to water quality and include strategies to track progress and share lessons learned. The plans provide a framework for public agencies and philanthropic funders seeking to pursue targeted watershed protection outcomes supported by monitoring, technical assistance and ongoing communications. Organizations large and small, public and private, are invited to read this paper and consider this program as an opportunity to align investment for greater impact and help ensure a bright future for the Delaware River watershed.
文摘Demand for water increases in Samendeni regarding the undertaken agricultural projects while pressure on surface water from global warming/evapotranspiration also increases. Thus, the need to evaluate the groundwater potential in the catchment is crucial as alternative supplier of water and resilience to climate hazards. The AHP was performed integrating ten influencing factors such as geomorphology, geology, soil, land use/land cover (lulc), slope, rainfall, drainage density, borehole rate & depth and piezometric level to generate groundwater potential zones (GWPZs) in Samendeni watershed (4420 km<sup>2</sup>). All the factors were processed and ranged into five (5) classes. Weight was assigned to each class of thematic layer. These thematic layers were then reclassified based on the normalized weight to be used in the calculation of groundwater potential zones (GWPZ). The final output, groundwater potential map, revealed a significant groundwater potential with very good (11%), good (31%), moderate (30%), poor (20%), and very poor (8%) of proportion. The interesting (very good, good) GWPZs in the study area are mostly in the central towards the east. The poor zones in term of groundwater potential are concentrated in the upper west region of the watershed. Besides the cross-validation with the relationship between different groundwater potential zones and the wells available in the study area, the overall accuracy was estimated to 88% provided from the result of the similarity analysis where 22 out of the 25 validation wells match with the expected yield classes of GWPZs. The statistics from that validation revealed the performance of AHP method to delineate groundwater potential zones at catchment level.
文摘Watershed prioritization is considered as the most significant aspect in watershed resource management and development program. The present work attempts to prioritize seventeen sub-watersheds in Ruparel watershed of Alwar district of Rajasthan, India. For prioritization of sub-watersheds, morphometric and land use/land cover (LULC) analysis were performed using remote sensing and GIS. Base map of the study area has been derived from SOI toposheet on 1:50,000 scale whereas LULC mapping was done using IRS P6 LISS III data. Standard methods for drainage morphometry have been followed for computing morphometric parameters such as linear and shape for seventeen sub-watersheds and allotted ranks based on their relationship with erodibility and a compound value has been calculated for final ranking. Five main LULC categories were computed and were assigned priority ranks and subsequently a compound parameter was determined for final ranking. Integration of both morphometric and LULC results reveal that SBW5, SBW7, SBW12 and SBW16 are the common sub-watersheds that fall under high priority, SBW3 falls under Medium category and SBW11 comes under low priority. The results of the analysis can be used to identify the sub-watersheds which need immediate restoration and will eventually help in watershed resource management for sustainable development.