Complex adaptive sys tem theory is a new and important embranchment of system science, which prov ides a new thought to research water resources allocation system. Based on the a nalysis of complexity and complex adap...Complex adaptive sys tem theory is a new and important embranchment of system science, which prov ides a new thought to research water resources allocation system. Based on the a nalysis of complexity and complex adaptive mechanism of water resources allocat ion system, a fire-new analysis model is presented in this paper. With t he description of dynamical mechanism of system, behavior characters of agents and the evaluation method of system status, an integrity research system is built to analyse the evolvement rule of water resources allocation system. A nd a brief research for the impact of water resources allocation in benefi cial regions of the Water Transfer from South to North China Project is conducted.展开更多
Based on Investigation and Assessment on Rational Exploitation and Utilization of Groundwater Resources in Typical Areas of the Hexi Corridor, the thesis studies on groundwater and environmental problems arising from ...Based on Investigation and Assessment on Rational Exploitation and Utilization of Groundwater Resources in Typical Areas of the Hexi Corridor, the thesis studies on groundwater and environmental problems arising from the large-scale agricultural development projects in Shule River Basin. The thesis analyzes problems in exploiting and utilizing water resources, defines the function zoning of groundwater resources in key areas and evaluates them. Finally, the thesis uses three-dimensional unsteady flow simulation and regional social and economic development plan to study on the allocation of groundwater in Shule River Basin. A proposal for rational allocation of Shule River Basin water resources has been put forward.展开更多
Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) mod...Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) model was applied to evaluate relative efficiency of water resource allocation plans. This model determined weights of indicators by GEM, and assessed the allocation schemes by MAUE. Compared with DEA (Data Envelopment Analysis) or ANN (Artificial Neural Networks), the mode was more applicable in some cases where decision-makers had preference for certain indicators展开更多
Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to ...Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to 2020, the immediate question for the Songhua River Region (SHRR) is whether water is sufficient to support the required yield increase. Very few studies have considered to what degree this plan influences the solution of WRA and how to adapt. This paper used a multi-objective programming model for WRA across the Harbin region located in the SHRR in 2020 and 2030 (p=75%). The Harbin region can be classified into four types of sub-regions according to WRA: Type I is Harbin city zone. With rapid urbanization, Harbin city zone has the highest risk of agricultural water shortage. Considering the severe situation, there is little space for Harbin city zone to reach the NIY goal. Type II is sub-regions including Wuchang, Shangzhi and Binxian. There are some agricultural water shortage risks in this type region. Because the water shortage is relatively small, it is possible to increase agricultural production through strengthening agricultural water-saving countermeasures and constructing water conservation facilities. Type III is sub-regions including Acheng, Hulan, Mulan and Fangzheng. In this type region, there may be a water shortage if the rate of urbanization accelerates. According to local conditions, it is needed to enhance water-saving countermeasures to increase agricultural production to a certain degree. Type IV is sub-regions including Shuangcheng, Bayan, Yilan, Yanshou and Tonghe. There are good water conditions for the extensive development of agriculture. Nevertheless, in order to ensure an increase in agricultural production, it is necessary to enhance the way in which water is utilized and consider soil resources. These results will help decision makers make a scientific NIY plan for the Harbin region for sustainable utilization of regional water resources and an increase in agricultural production.展开更多
Aquatic ecosystems require ecological water allocation to prevent from being damaged by natural disasters and undue exploitation. This paper discusses and estimates the ecological water requirements (EWRs) of typica...Aquatic ecosystems require ecological water allocation to prevent from being damaged by natural disasters and undue exploitation. This paper discusses and estimates the ecological water requirements (EWRs) of typical areas in the Huaihe Basin to determine rational allocations of water resources and pro- mote regional improvements of the ecological environment. The main river course, including Hongze Lake and Nansi Lake, was selected as the study subject. Calculational methods for the river and lake EWRs were based on the reasonableness of the results and data availability. The monthly guarantee rate method was used to calculate monthly, flood period, non-flood period, and annual EWRs for the main river course and the main tributaries at two different guarantee rates. The minimum water level method was used to calculate annual EWRs for Hongze Lake and the upper and lower Nansi Lake of 1.521×10^9 m^3, 0.637×10^9 m^3, and 0.306×10^9 m^3. The results were used to evaluate the rationality of the quantity of water resources allocated to ecological uses in the Huaihe Basin during 1998-2003. The result shows that the present water resource allocations in the Huaihe Basin cannot satisfy the basic ecological requirements for some years, especially years with less precipitation.展开更多
文摘Complex adaptive sys tem theory is a new and important embranchment of system science, which prov ides a new thought to research water resources allocation system. Based on the a nalysis of complexity and complex adaptive mechanism of water resources allocat ion system, a fire-new analysis model is presented in this paper. With t he description of dynamical mechanism of system, behavior characters of agents and the evaluation method of system status, an integrity research system is built to analyse the evolvement rule of water resources allocation system. A nd a brief research for the impact of water resources allocation in benefi cial regions of the Water Transfer from South to North China Project is conducted.
基金the project Survey and Assessment of Water Resources Exploitation and Utilization in Characteristic Areas of the Hexi Corridor
文摘Based on Investigation and Assessment on Rational Exploitation and Utilization of Groundwater Resources in Typical Areas of the Hexi Corridor, the thesis studies on groundwater and environmental problems arising from the large-scale agricultural development projects in Shule River Basin. The thesis analyzes problems in exploiting and utilizing water resources, defines the function zoning of groundwater resources in key areas and evaluates them. Finally, the thesis uses three-dimensional unsteady flow simulation and regional social and economic development plan to study on the allocation of groundwater in Shule River Basin. A proposal for rational allocation of Shule River Basin water resources has been put forward.
文摘Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) model was applied to evaluate relative efficiency of water resource allocation plans. This model determined weights of indicators by GEM, and assessed the allocation schemes by MAUE. Compared with DEA (Data Envelopment Analysis) or ANN (Artificial Neural Networks), the mode was more applicable in some cases where decision-makers had preference for certain indicators
基金the Knowledge Innovation Project of Chinese Academy of Sciences (NO.KZCX2-YW-Q06-1-3)the Ministry of Science and Technology of China for"973"project(NO.2010CB428404)
文摘Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to 2020, the immediate question for the Songhua River Region (SHRR) is whether water is sufficient to support the required yield increase. Very few studies have considered to what degree this plan influences the solution of WRA and how to adapt. This paper used a multi-objective programming model for WRA across the Harbin region located in the SHRR in 2020 and 2030 (p=75%). The Harbin region can be classified into four types of sub-regions according to WRA: Type I is Harbin city zone. With rapid urbanization, Harbin city zone has the highest risk of agricultural water shortage. Considering the severe situation, there is little space for Harbin city zone to reach the NIY goal. Type II is sub-regions including Wuchang, Shangzhi and Binxian. There are some agricultural water shortage risks in this type region. Because the water shortage is relatively small, it is possible to increase agricultural production through strengthening agricultural water-saving countermeasures and constructing water conservation facilities. Type III is sub-regions including Acheng, Hulan, Mulan and Fangzheng. In this type region, there may be a water shortage if the rate of urbanization accelerates. According to local conditions, it is needed to enhance water-saving countermeasures to increase agricultural production to a certain degree. Type IV is sub-regions including Shuangcheng, Bayan, Yilan, Yanshou and Tonghe. There are good water conditions for the extensive development of agriculture. Nevertheless, in order to ensure an increase in agricultural production, it is necessary to enhance the way in which water is utilized and consider soil resources. These results will help decision makers make a scientific NIY plan for the Harbin region for sustainable utilization of regional water resources and an increase in agricultural production.
基金the National Key Basic Research and Development (973) Program of China (No. 2006CB403407)
文摘Aquatic ecosystems require ecological water allocation to prevent from being damaged by natural disasters and undue exploitation. This paper discusses and estimates the ecological water requirements (EWRs) of typical areas in the Huaihe Basin to determine rational allocations of water resources and pro- mote regional improvements of the ecological environment. The main river course, including Hongze Lake and Nansi Lake, was selected as the study subject. Calculational methods for the river and lake EWRs were based on the reasonableness of the results and data availability. The monthly guarantee rate method was used to calculate monthly, flood period, non-flood period, and annual EWRs for the main river course and the main tributaries at two different guarantee rates. The minimum water level method was used to calculate annual EWRs for Hongze Lake and the upper and lower Nansi Lake of 1.521×10^9 m^3, 0.637×10^9 m^3, and 0.306×10^9 m^3. The results were used to evaluate the rationality of the quantity of water resources allocated to ecological uses in the Huaihe Basin during 1998-2003. The result shows that the present water resource allocations in the Huaihe Basin cannot satisfy the basic ecological requirements for some years, especially years with less precipitation.