Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as...Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.展开更多
Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereaf...Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereafter referred to as the Technical Outline),this paper elaborates on the collection and sorting of the basic data of water resources conditions,water resources development and utilization status,social and economic development in basins,analysis and examination of integrity,consistency,normativeness,and rationality of the basic data,and the necessity of WRCC evaluation.This paper also describes the technique of evaluating the WRCC in prefecture-level cities and city-level administrative divisions in the District of the Taihu Lake Basin,which is composed of the Taihu Lake Basin and the Southeastern River Basin.The evaluation process combines the binary index evaluation method and reduction index evaluation method.The former,recommended by the Technical Outline,uses the total water use and the amount of exploited groundwater as evaluation indices,showing stronger operability,while the latter is developed by simplifying and optimizing the comprehensive index system with greater systematicness and completeness.The mutual validation and adjustment of the results of the above-mentioned two evaluation methods indicate that the WRCC of the District of the Taihu Lake Basin is overloaded in general because some prefecture-level cities and city-level administrative divisions in the Taihu Lake Basin and the Southeastern River Basin are in a severely overloaded state.In order to explain this conclusion,this paper analyzes the causes of WRCC overloading from the aspects of basin water environment,water resources development and utilization,water resources regulation and control ability,water resources utilization efficiency,and water resources management.展开更多
A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD). In the model, three different water resources utilization programs were adopted: (1) continuity of...A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD). In the model, three different water resources utilization programs were adopted: (1) continuity of existing water utilization, (2) water conservation/saving, and (3) water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.展开更多
Assessing the water resource carrying capacity is beneficial for measuring the scale of industry and population agglomeration,and also avoiding the contradiction between increasing people and decreasing available wate...Assessing the water resource carrying capacity is beneficial for measuring the scale of industry and population agglomeration,and also avoiding the contradiction between increasing people and decreasing available water resource,due to the expansion of industry and city size.Based on the prediction model of optimum population development size,by using hydrological data,also with the demographic data from 1956 to 2010,this article analyzes and predicts the urban moderate scale under the limit of the water resource in the future of Yulin City by GIS. The main conclusions are as follows. There is growing tendency of water resources overloading. According to the result of model simulation,by2015,the overload rate of population size will be 1. 04. By 2020,the overload rate of population size will grow up to 1. 08. The oversized population mainly comes from cities and towns. The overload rate for cities and towns in 2015 and 2020 is 1. 89 and 1. 73,respectively. With the expansion of cities and industries,suburban areas could have a great potential for carrying population,because lots of suburban people may move to cities and towns according to prediction. In view of the above-mentioned facts,the population size should be controlled in a reasonable range.展开更多
Dongying City, which is the most important central city in the Yellow River Delta, is located in the estuary of the Yellow River. With a short land formation time, ecological environment is very weak in this area. To ...Dongying City, which is the most important central city in the Yellow River Delta, is located in the estuary of the Yellow River. With a short land formation time, ecological environment is very weak in this area. To realize the sustainable economic development of the Yellow River Delta, resource environment and resource environmental bearing capacity(REBC) must be improved. This study builds assessment system of regional REBC through resource and economic characteristics in Yellow River Delta and uses principal component analysis(PCA) method to evaluate REBC of five counties and districts in Dongying City in 2011-2015 on the dimensions of time and space. Results show that, on the time dimension, Guangrao County is ranked first, Dongying district second for four years and Hekou and Kenli districts with lower ranks in 2012-2015, indicating that more attention needs to be paid to REBC of Hekou and Dongying districts and these two districts should be included into key monitoring areas. From space scale, REBC in five counties and districts has been gradually improving. In order to further develop REBC in Dongying City, measures such as intensifying protection of urban ecological environment and developing circular economy, etc. should be implemented.展开更多
Climate change is an inevitable trend,which challenges security of water resources in China,especially in cities.Assessing vulnerability of water resource to climate change in cities has important role for policy make...Climate change is an inevitable trend,which challenges security of water resources in China,especially in cities.Assessing vulnerability of water resource to climate change in cities has important role for policy makers. The paper constructs a vulnerability function,including exposure,sensitivity and adaptive capacity,according to the vulnerability concept proposed by IPCC,establishes an assessment indicators system of water resources to climate change in cities,and analyzes vulnerability features of Chinese cites based on 655 cities'data in 2006.The vulnerability assessment results show that there are distinctive differences among all the cities,between east,central and west cities,between ordinary,big and mega cities,while there is no statistical significant difference between north and south cities.Based on the research,the paper suggests that strategic emphasis should focus on the central cities and ordinary cities展开更多
According to the relevant data about the land resources and population in Liaocheng City from 1999 to 2008, by using the research method of bearing capacity of natural resources, the thesis analyzes the relationship b...According to the relevant data about the land resources and population in Liaocheng City from 1999 to 2008, by using the research method of bearing capacity of natural resources, the thesis analyzes the relationship between natural resources and dynamic change of population in Liaocheng City. The results show that the farmland tends to diminish on the whole, and forests, garden land, urban-rural settlements and land for enterprises and mining increase slowly. Based on the analysis of the dynamic relationship between land resources and population, we conclude that the land resources still can bear the current population in Liaocheng City, but the population development inflict critical pressure on the forest resources and water resources.展开更多
The paper analyses the space time characteristics, primary causes and disastrous effects of the drying up of the Yellow River, and proposes the concept of "water resource bearing capacity (WRBC)", which refe...The paper analyses the space time characteristics, primary causes and disastrous effects of the drying up of the Yellow River, and proposes the concept of "water resource bearing capacity (WRBC)", which refers to the maximum bearing capacity of a river in meeting human demands for water on the precondition of sound recycling of the ecosystem. The concept encourages cautious human actions to save and conserve water resources.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.42271279,41931293,41801175)。
文摘Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.
基金supported by the National Natural Science Foundation of China(Grant No.51379181)Phase Ⅲ Project(2018-2021)of the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereafter referred to as the Technical Outline),this paper elaborates on the collection and sorting of the basic data of water resources conditions,water resources development and utilization status,social and economic development in basins,analysis and examination of integrity,consistency,normativeness,and rationality of the basic data,and the necessity of WRCC evaluation.This paper also describes the technique of evaluating the WRCC in prefecture-level cities and city-level administrative divisions in the District of the Taihu Lake Basin,which is composed of the Taihu Lake Basin and the Southeastern River Basin.The evaluation process combines the binary index evaluation method and reduction index evaluation method.The former,recommended by the Technical Outline,uses the total water use and the amount of exploited groundwater as evaluation indices,showing stronger operability,while the latter is developed by simplifying and optimizing the comprehensive index system with greater systematicness and completeness.The mutual validation and adjustment of the results of the above-mentioned two evaluation methods indicate that the WRCC of the District of the Taihu Lake Basin is overloaded in general because some prefecture-level cities and city-level administrative divisions in the Taihu Lake Basin and the Southeastern River Basin are in a severely overloaded state.In order to explain this conclusion,this paper analyzes the causes of WRCC overloading from the aspects of basin water environment,water resources development and utilization,water resources regulation and control ability,water resources utilization efficiency,and water resources management.
基金supported by the National Natural Science Foundation of China (Grant No.50638020)
文摘A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD). In the model, three different water resources utilization programs were adopted: (1) continuity of existing water utilization, (2) water conservation/saving, and (3) water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.
基金Supported by National Natural Science Foundation of China(41171449)National Natural Science Foundation of China(41371536)Key Deployment Project of the Chinese Academy of Sciences(KZZD-EW-06-01)
文摘Assessing the water resource carrying capacity is beneficial for measuring the scale of industry and population agglomeration,and also avoiding the contradiction between increasing people and decreasing available water resource,due to the expansion of industry and city size.Based on the prediction model of optimum population development size,by using hydrological data,also with the demographic data from 1956 to 2010,this article analyzes and predicts the urban moderate scale under the limit of the water resource in the future of Yulin City by GIS. The main conclusions are as follows. There is growing tendency of water resources overloading. According to the result of model simulation,by2015,the overload rate of population size will be 1. 04. By 2020,the overload rate of population size will grow up to 1. 08. The oversized population mainly comes from cities and towns. The overload rate for cities and towns in 2015 and 2020 is 1. 89 and 1. 73,respectively. With the expansion of cities and industries,suburban areas could have a great potential for carrying population,because lots of suburban people may move to cities and towns according to prediction. In view of the above-mentioned facts,the population size should be controlled in a reasonable range.
基金jointly funded by The National Natural Science Fund Project(41602356)Open Projects of Key REBC Laboratories supported by the Ministry of Land and Resources(Number:CCA2016.08)+1 种基金Shandong Provincial Geological Prospecting Fund Project(Prospecting number in Shandong Province:2013(55)2016(07))
文摘Dongying City, which is the most important central city in the Yellow River Delta, is located in the estuary of the Yellow River. With a short land formation time, ecological environment is very weak in this area. To realize the sustainable economic development of the Yellow River Delta, resource environment and resource environmental bearing capacity(REBC) must be improved. This study builds assessment system of regional REBC through resource and economic characteristics in Yellow River Delta and uses principal component analysis(PCA) method to evaluate REBC of five counties and districts in Dongying City in 2011-2015 on the dimensions of time and space. Results show that, on the time dimension, Guangrao County is ranked first, Dongying district second for four years and Hekou and Kenli districts with lower ranks in 2012-2015, indicating that more attention needs to be paid to REBC of Hekou and Dongying districts and these two districts should be included into key monitoring areas. From space scale, REBC in five counties and districts has been gradually improving. In order to further develop REBC in Dongying City, measures such as intensifying protection of urban ecological environment and developing circular economy, etc. should be implemented.
基金a part of research result of the CLIMA Project,supported by the European Union AsiaLink Programme
文摘Climate change is an inevitable trend,which challenges security of water resources in China,especially in cities.Assessing vulnerability of water resource to climate change in cities has important role for policy makers. The paper constructs a vulnerability function,including exposure,sensitivity and adaptive capacity,according to the vulnerability concept proposed by IPCC,establishes an assessment indicators system of water resources to climate change in cities,and analyzes vulnerability features of Chinese cites based on 655 cities'data in 2006.The vulnerability assessment results show that there are distinctive differences among all the cities,between east,central and west cities,between ordinary,big and mega cities,while there is no statistical significant difference between north and south cities.Based on the research,the paper suggests that strategic emphasis should focus on the central cities and ordinary cities
基金Supported by National Natural Resources Foundation (40901276,41072258,40772209)
文摘According to the relevant data about the land resources and population in Liaocheng City from 1999 to 2008, by using the research method of bearing capacity of natural resources, the thesis analyzes the relationship between natural resources and dynamic change of population in Liaocheng City. The results show that the farmland tends to diminish on the whole, and forests, garden land, urban-rural settlements and land for enterprises and mining increase slowly. Based on the analysis of the dynamic relationship between land resources and population, we conclude that the land resources still can bear the current population in Liaocheng City, but the population development inflict critical pressure on the forest resources and water resources.
文摘The paper analyses the space time characteristics, primary causes and disastrous effects of the drying up of the Yellow River, and proposes the concept of "water resource bearing capacity (WRBC)", which refers to the maximum bearing capacity of a river in meeting human demands for water on the precondition of sound recycling of the ecosystem. The concept encourages cautious human actions to save and conserve water resources.