Sediment cores(containing sediment and overlying water) from Baihua Reservoir(SW China)were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reduc...Sediment cores(containing sediment and overlying water) from Baihua Reservoir(SW China)were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reducing bacteria(SRB) on mercury(Hg) methylation at sediment–water interfaces. Concentrations of dissolved methyl mercury(DMe Hg) in the overlying water of the control cores with bioactivity maintained(BAC) and cores with only sulfate-reducing bacteria inhibited(SRBI) and bacteria fully inhibited(BACI) were measured at the anaerobic stage followed by the aerobic stage. For the BAC and SRBI cores, DMe Hg concentrations in waters were much higher at the anaerobic stage than those at the aerobic stage, and they were negatively correlated to the dissolved oxygen concentrations(r =- 0.5311 and r =- 0.4977 for BAC and SRBI, respectively). The water DMe Hg concentrations of the SRBI cores were 50% lower than those of the BAC cores, indicating that the SRB is of great importance in Hg methylation in sediment–water systems, but there should be other microbes such as iron-reducing bacteria and those containing specific gene cluster(hgc AB), besides SRB,causing Hg methylation in the sediment–water system.展开更多
Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the...Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the main channel are analyzed in this paper.The results show that before the operation of the Xiaolangdi Reservoir(XLDR)from 1986 to 1999,the main channel shrunk continually,with decreasing width and depth.The rate of reduction in its width decreased along the river whereas that of depth increased in the downstream direction.Because the rate of decrease in the width of the main channel was greater than that in channel depth,the cross-sectional geomorphic coefficient decreased in the sub-reach above Gaocun.By contrast,for the sub-reach below Gaocun,the rate of decrease in channel width was smaller than that in channel depth,and the cross-sectional geomorphic coefficient increased.Once the XLDR had begun operation,the main channel eroded continually,and both its width and depth increased from 2000 to 2015.The rate of increase in channel width decreased in the longitudinal direction,and the depth of the main channel in all sub-reaches increased by more than 2 m.Because the rate of increase in the depth of the main channel was clearly larger than that of its width,the cross-sectional geomorphic coefficient decreased in all sub-reaches.The cross-sectional geometry of the main-channel of the lower Yellow River exhibited different adjustment patterns before and after the XLDR began operation.Before its operation,the main channel mainly narrowed in the transverse direction and silted in the vertical direction in the sub-reach above Aishan;in the sub-reach below Aishan,it primarily silted in the vertical direction.After the XLDR began operation,the main channel adjusted by widening in the transverse direction and deepening in the vertical direction in the sub-reach above Aishan;in the sub-reach below it,the main channel adjusted mainly by deepening in the vertical direction.Compared with the rates of decrease in the width and depth of the main channel during the siltation period,the rate of increase in channel width during the scouring period was clearly smaller while the rate of increase in channel depth was larger.After continual siltation and scouring from 1986 to 2015,the cross-sectional geometry of the main-channel changed from wide and shallow to relatively narrow and deep.The pattern of adjustment in the main channel was closely related to the water and sediment conditions.For the braided reach,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with suspended sediment concentration(SSC)during the siltation period.By contrast,the cross-sectional geomorphic coefficient was positively correlated with discharge and negatively correlated with SSC during the scouring period.For the transitional and meandering reaches,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with SSC.展开更多
基金supported by the National Natural Science Foundation of China(nos.41063006,41363007,and 41273099)the Science and Technology Fund of Guizhou Province(no.[2013]2296)
文摘Sediment cores(containing sediment and overlying water) from Baihua Reservoir(SW China)were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reducing bacteria(SRB) on mercury(Hg) methylation at sediment–water interfaces. Concentrations of dissolved methyl mercury(DMe Hg) in the overlying water of the control cores with bioactivity maintained(BAC) and cores with only sulfate-reducing bacteria inhibited(SRBI) and bacteria fully inhibited(BACI) were measured at the anaerobic stage followed by the aerobic stage. For the BAC and SRBI cores, DMe Hg concentrations in waters were much higher at the anaerobic stage than those at the aerobic stage, and they were negatively correlated to the dissolved oxygen concentrations(r =- 0.5311 and r =- 0.4977 for BAC and SRBI, respectively). The water DMe Hg concentrations of the SRBI cores were 50% lower than those of the BAC cores, indicating that the SRB is of great importance in Hg methylation in sediment–water systems, but there should be other microbes such as iron-reducing bacteria and those containing specific gene cluster(hgc AB), besides SRB,causing Hg methylation in the sediment–water system.
基金Key Program of National Natural Science Foundation of China,No.51639005National Key R&D Program of China,No.2017YFC0405202,No.2016YFC0402406。
文摘Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the main channel are analyzed in this paper.The results show that before the operation of the Xiaolangdi Reservoir(XLDR)from 1986 to 1999,the main channel shrunk continually,with decreasing width and depth.The rate of reduction in its width decreased along the river whereas that of depth increased in the downstream direction.Because the rate of decrease in the width of the main channel was greater than that in channel depth,the cross-sectional geomorphic coefficient decreased in the sub-reach above Gaocun.By contrast,for the sub-reach below Gaocun,the rate of decrease in channel width was smaller than that in channel depth,and the cross-sectional geomorphic coefficient increased.Once the XLDR had begun operation,the main channel eroded continually,and both its width and depth increased from 2000 to 2015.The rate of increase in channel width decreased in the longitudinal direction,and the depth of the main channel in all sub-reaches increased by more than 2 m.Because the rate of increase in the depth of the main channel was clearly larger than that of its width,the cross-sectional geomorphic coefficient decreased in all sub-reaches.The cross-sectional geometry of the main-channel of the lower Yellow River exhibited different adjustment patterns before and after the XLDR began operation.Before its operation,the main channel mainly narrowed in the transverse direction and silted in the vertical direction in the sub-reach above Aishan;in the sub-reach below Aishan,it primarily silted in the vertical direction.After the XLDR began operation,the main channel adjusted by widening in the transverse direction and deepening in the vertical direction in the sub-reach above Aishan;in the sub-reach below it,the main channel adjusted mainly by deepening in the vertical direction.Compared with the rates of decrease in the width and depth of the main channel during the siltation period,the rate of increase in channel width during the scouring period was clearly smaller while the rate of increase in channel depth was larger.After continual siltation and scouring from 1986 to 2015,the cross-sectional geometry of the main-channel changed from wide and shallow to relatively narrow and deep.The pattern of adjustment in the main channel was closely related to the water and sediment conditions.For the braided reach,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with suspended sediment concentration(SSC)during the siltation period.By contrast,the cross-sectional geomorphic coefficient was positively correlated with discharge and negatively correlated with SSC during the scouring period.For the transitional and meandering reaches,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with SSC.