Solution-cast films of shape memory polyurethane have been investigated.Differential scanning calorimetry, DMA, tensile test, water vapor permeability and the shape memory effect were carried out to characterize these...Solution-cast films of shape memory polyurethane have been investigated.Differential scanning calorimetry, DMA, tensile test, water vapor permeability and the shape memory effect were carried out to characterize these polyurethane membranes. Samples cast at higher temperatures contained more hard segment in the crystalline state than a sample cast at lower temperature. The change in the water vapor permeability (WVP) of SMPU films with respect to the temperature follows an S-shaped curve, and increases abruptly at T m of the soft segment for the fractional free volume (FFV, the ratio of free volume and specific volume in polymers) increased linearly with temperature. The water vapor permeability dependency of the temperature and humidity contribute to the result of the change of diffusion and solubility with the surrounding air condition. The diffusion coefficient (D) are the function of temperature and show good fit the Arrhenius form but show different parameter values when above and below T g. The crystalline state hard-segment is necessary for the good shape memory展开更多
Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, an...Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, and specific impulse, but water flux changes the shapes of supercavity. To uncover the cavitator drag characteristics and the supercavity shape of HSSVs with water inflow for ramjets, supercavitation flows around a disk cavitator with inlet hole are studied using the homogenous model. By changing the water inflow in the range of 0-10 L/s through cavitators having different water inlet areas, a series of numerical simulations of supercavitation flows was performed. The water inflow flux of ramjets significantly influences the drag features of disk cavitators and the supercavity shape, but it has little influence on the slender ratio of supercavitaty. Furthermore, as the water inlet area increases, the drag coefficient of the cavitators' front face decreases, but this increase does not influence the diameter of the supercavity's maximum cross section and the drag coefficient of the entire cavitator significantly. In addition, with increasing waterflux of the ramjet, both the drag coefficient of cavitators and the maximum diameter of supercavities decrease stably. This research will be helpful for layout optimization and supercavitaty scheme design of HSSVs with water inflow for ramjets.展开更多
The effect of an external charge on water transportation through T-shaped carbon nanotubes is tested by molecular dynamics simulations.The simulation results show that a relatively small charge reduces the water flux ...The effect of an external charge on water transportation through T-shaped carbon nanotubes is tested by molecular dynamics simulations.The simulation results show that a relatively small charge reduces the water flux through the canbon nanotubes,but a large enough charge prompts the water transportation.This finding may be helpful to biological amplifiers and nanodevices researches.展开更多
A facile solution-phase route for the synthesis of shape-controlled ZnO nanocrystals in a polyol/water mixture system was developed. The obtained nanocrystals were characterized by X-ray diffraction, transmission elec...A facile solution-phase route for the synthesis of shape-controlled ZnO nanocrystals in a polyol/water mixture system was developed. The obtained nanocrystals were characterized by X-ray diffraction, transmission electron microscopy and UV-visible absorption spectroscopy. The results indicate that modulating the adding ways of water has a significant effect on the shape of the obtained nanocrystals. The addition of small quantity of water can increase the growth rate of crystals and leads to the formation of different shapes. The resulting shapes of the novel structures are diverse, including spheres, cones, and teardrops, all of which are obtained without any additional surfactants. These studies concerning the shape evolution of nanocrystals should be valuable for further design and for greater understanding of advanced nanoscale building-block architectures.展开更多
In this paper, added resistances acting on a hull of non ballast water ship(NBS) in high waves is discussed. The non ballast water ships were developed at the laboratory of the authors at Osaka Prefecture University, ...In this paper, added resistances acting on a hull of non ballast water ship(NBS) in high waves is discussed. The non ballast water ships were developed at the laboratory of the authors at Osaka Prefecture University, Japan. In the present paper, the performances of three kinds of bow shapes developed for the NBS were theoretically and experimentally investigated to find the best one in high waves. In previous papers, an optimum bow shape for the NBS was developed in calm water and in moderated waves. For a 2 m model for experiments and computations, the wave height is 0.02 m. This means that the wave height is 15% of the draft of the ship in full load conditions. In this paper, added resistances in high waves up to 0.07 m for a 2 m model or 53% of the full load draft are investigated. In such high waves linear wave theories which have been used in the design stage of a ship for a long time may not work well anymore, and experiments are the only effective tool to predict the added resistance in high waves. With the computations for waves, the ship is in a fully captured condition because shorter waves, λ/Lpp<0.6, are assumed.展开更多
Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numeri...Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study toinvestigate the operating performance of OWC air chamber. The RANS equations, standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.展开更多
This study explores the arrivals of water pipeline break failures. The aim is to assist the facility manager in the decision making process. Based on characteristics of the data set ranging from 2011 to 2014, two step...This study explores the arrivals of water pipeline break failures. The aim is to assist the facility manager in the decision making process. Based on characteristics of the data set ranging from 2011 to 2014, two steps of analysis were presented in the paper. This first step is the analysis of partially complete data set (2011 data). The 2-sample KS test is adopted to check the similarity between this data set and the entire data set with no underlying distribution implied. In order to conduct the reliability analysis, the Weibull distribution is adopted to evaluate the data. For annual data set, the 2-parameter Weibull distribution fits data sets pretty well. The shape parameters are a little greater than 1, indicating a slightly increasing arrival rate of such failures. For the entire data set, the 3-parameter Weibull tends to fit the data better than the 2-parameter Weibull. The shape parameter is well above 1, indicating an increasing arrival rate of the failures. To eliminate the impact of missing points for the 2011 data set, data from 2012 to 2014 were also considered as a new set, the Weibull distribution generated a decent fitting. The shape parameter is a little greater than 1. Therefore, there is a slightly increasing arrival rate of those pipeline failures. Results from this study provide decision makers valuable information in terms of whether additional efforts shall be made to enhance the system’s performance in order to reduce the failure rate.展开更多
基金TheHongKongPolytechnicUniversity (A .14 .37.PB5 3)
文摘Solution-cast films of shape memory polyurethane have been investigated.Differential scanning calorimetry, DMA, tensile test, water vapor permeability and the shape memory effect were carried out to characterize these polyurethane membranes. Samples cast at higher temperatures contained more hard segment in the crystalline state than a sample cast at lower temperature. The change in the water vapor permeability (WVP) of SMPU films with respect to the temperature follows an S-shaped curve, and increases abruptly at T m of the soft segment for the fractional free volume (FFV, the ratio of free volume and specific volume in polymers) increased linearly with temperature. The water vapor permeability dependency of the temperature and humidity contribute to the result of the change of diffusion and solubility with the surrounding air condition. The diffusion coefficient (D) are the function of temperature and show good fit the Arrhenius form but show different parameter values when above and below T g. The crystalline state hard-segment is necessary for the good shape memory
基金Supported by the National Natural Science Foundation of China under Grant Nos. 51579209, 51409215 and 51679202
文摘Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, and specific impulse, but water flux changes the shapes of supercavity. To uncover the cavitator drag characteristics and the supercavity shape of HSSVs with water inflow for ramjets, supercavitation flows around a disk cavitator with inlet hole are studied using the homogenous model. By changing the water inflow in the range of 0-10 L/s through cavitators having different water inlet areas, a series of numerical simulations of supercavitation flows was performed. The water inflow flux of ramjets significantly influences the drag features of disk cavitators and the supercavity shape, but it has little influence on the slender ratio of supercavitaty. Furthermore, as the water inlet area increases, the drag coefficient of the cavitators' front face decreases, but this increase does not influence the diameter of the supercavity's maximum cross section and the drag coefficient of the entire cavitator significantly. In addition, with increasing waterflux of the ramjet, both the drag coefficient of cavitators and the maximum diameter of supercavities decrease stably. This research will be helpful for layout optimization and supercavitaty scheme design of HSSVs with water inflow for ramjets.
基金supported by the National Science Foundation of China under grant No.10825520Shanghai Supercomputer Center of China
文摘The effect of an external charge on water transportation through T-shaped carbon nanotubes is tested by molecular dynamics simulations.The simulation results show that a relatively small charge reduces the water flux through the canbon nanotubes,but a large enough charge prompts the water transportation.This finding may be helpful to biological amplifiers and nanodevices researches.
基金Funded by the National Natural Science Foundation of China (No.50572039)the Postdoctoral Foundation of China (No. 20060390284)Jiangsu Planned Projects for Postdoctoral Research Funds
文摘A facile solution-phase route for the synthesis of shape-controlled ZnO nanocrystals in a polyol/water mixture system was developed. The obtained nanocrystals were characterized by X-ray diffraction, transmission electron microscopy and UV-visible absorption spectroscopy. The results indicate that modulating the adding ways of water has a significant effect on the shape of the obtained nanocrystals. The addition of small quantity of water can increase the growth rate of crystals and leads to the formation of different shapes. The resulting shapes of the novel structures are diverse, including spheres, cones, and teardrops, all of which are obtained without any additional surfactants. These studies concerning the shape evolution of nanocrystals should be valuable for further design and for greater understanding of advanced nanoscale building-block architectures.
文摘In this paper, added resistances acting on a hull of non ballast water ship(NBS) in high waves is discussed. The non ballast water ships were developed at the laboratory of the authors at Osaka Prefecture University, Japan. In the present paper, the performances of three kinds of bow shapes developed for the NBS were theoretically and experimentally investigated to find the best one in high waves. In previous papers, an optimum bow shape for the NBS was developed in calm water and in moderated waves. For a 2 m model for experiments and computations, the wave height is 0.02 m. This means that the wave height is 15% of the draft of the ship in full load conditions. In this paper, added resistances in high waves up to 0.07 m for a 2 m model or 53% of the full load draft are investigated. In such high waves linear wave theories which have been used in the design stage of a ship for a long time may not work well anymore, and experiments are the only effective tool to predict the added resistance in high waves. With the computations for waves, the ship is in a fully captured condition because shorter waves, λ/Lpp<0.6, are assumed.
基金supported by the National Natural Science Foundation of China(Grant Nos. 50909089 and 40911140281)Qingdao S&T Development Program(09-1-3-41-jch)Korean Ministry of Land,Transport & Maritime Affairs through KORDI Program
文摘Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study toinvestigate the operating performance of OWC air chamber. The RANS equations, standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.
文摘This study explores the arrivals of water pipeline break failures. The aim is to assist the facility manager in the decision making process. Based on characteristics of the data set ranging from 2011 to 2014, two steps of analysis were presented in the paper. This first step is the analysis of partially complete data set (2011 data). The 2-sample KS test is adopted to check the similarity between this data set and the entire data set with no underlying distribution implied. In order to conduct the reliability analysis, the Weibull distribution is adopted to evaluate the data. For annual data set, the 2-parameter Weibull distribution fits data sets pretty well. The shape parameters are a little greater than 1, indicating a slightly increasing arrival rate of such failures. For the entire data set, the 3-parameter Weibull tends to fit the data better than the 2-parameter Weibull. The shape parameter is well above 1, indicating an increasing arrival rate of the failures. To eliminate the impact of missing points for the 2011 data set, data from 2012 to 2014 were also considered as a new set, the Weibull distribution generated a decent fitting. The shape parameter is a little greater than 1. Therefore, there is a slightly increasing arrival rate of those pipeline failures. Results from this study provide decision makers valuable information in terms of whether additional efforts shall be made to enhance the system’s performance in order to reduce the failure rate.