Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be co...Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be controlled by reducing the amount of fertilizer applied,but pollution caused by soil and water erosion in hilly areas can only be controlled by conservation forests.The catchment area around Fushi Reservoir was selected as a test site and mechanisms of N loss from a vertical spatial perspective through field observations were determined.The main N losses occurred from June to September,accounting for 85.9-95.9%of the annual loss,with the losses in June and July accounting for 46.0%of the total,and in August and September for 41.9%.The N leakage from the water source area was effectively reduced by 38.2%through the optimization of the stand structure of the conservation forests.Establishing well-structured forests for water conservation is crucial to ensure the security of drinking water.This preliminary research lays the foundation for revealing then loss mechanisms in water source areas and improving the control of non-point source pollution in these areas.展开更多
Protection planning is made for rural centralized drinking water source areas according to current situations of rural drinking water and existing problems of centralized drinking water source areas in Chongqing,and i...Protection planning is made for rural centralized drinking water source areas according to current situations of rural drinking water and existing problems of centralized drinking water source areas in Chongqing,and in combination with survey,analysis and evaluation of urban-rural drinking water source areas in whole city.There are engineering measures and non-engineering measures,to guarantee drinking water security of rural residents,improve rural ecological environment,realize sustainable use of water resource,and promote sustainable development of society.Engineering measures include conservation and protection of water resource,ecological restoration,isolation,and comprehensive control of pointsource and area-source pollution.Non-engineering measures include construction of monitoring system for drinking water source area,construction of security information system for rural centralized drinking water source area,and construction of emergency mechanism for water pollution accidents in rural water source areas.展开更多
We investigated seasonal variations in cyanobacterial biomass and the forms of its dominant population (M. aeruginosa) and their correlation with environmental factors in the water source area of Chaohu City, China ...We investigated seasonal variations in cyanobacterial biomass and the forms of its dominant population (M. aeruginosa) and their correlation with environmental factors in the water source area of Chaohu City, China from December 2011 to October 2012. The results show that species belonging to the phylum Cyanophyta occupied the maximum proportion of phytoplankton biomass, and that the dominant population in the water source area of Chaohu City was M. aeruginosa. The variation in cyanobacterial biomass from March to August 2012 was well fitted to the logistic growth model. The growth rate of cyanobacteria was the highest in June, and the biomass of cyanobacteria reached a maximum in August. From February to March 2012, the main form of M. aeruginosa was the single-cell form; M. aeruginosa colonies began to appear from April, and blooms appeared on the water surface in May. The maximum diameter of the colonies was recorded in July, and then gradually decreased from August. The diameter range ofM. aeruginosa colonies was 18.37-237.77μm, and most of the colonies were distributed in the range 20-200μm, comprising 95.5% of the total number of samples. Temperature and photosynthetically active radiation may be the most important factors that influenced the annual variation in M. aeruginosa biomass and forms. The suitable temperature for cyanobaeterial growth was in the range of 15-30℃. In natural water bodies, photosynthetically active radiation had a significant positive influence on the colonial diameter of M. aeruginosa (P〈0.01).展开更多
The Shitoukoumen Reservoir is one of main drinking water source areas in Changchun City,and there is a contradiction between the protection and the economic development of water source areas. In this paper,the primary...The Shitoukoumen Reservoir is one of main drinking water source areas in Changchun City,and there is a contradiction between the protection and the economic development of water source areas. In this paper,the primary and secondary reserves in drinking water source area of the Shitoukoumen Reservoir are taken as research objects. Based on the theory of ecological compensation,the ecological compensation standard is accounted and determined from different perspectives,and the suggestion of the phased ecological compensation in water source areas is proposed.展开更多
Maintaining drinking water security is a global issue,and phosphorus is a limiting factor affecting drinking water quality.Hence,this study took Fushi Reservoir as a test area,and set up field runoff observation plots...Maintaining drinking water security is a global issue,and phosphorus is a limiting factor affecting drinking water quality.Hence,this study took Fushi Reservoir as a test area,and set up field runoff observation plots around the reservoir catchment,which is covered by moso bamboo stands.Through field observation,the vertical variation of phosphorus loss in different stands of moso bamboo was initially studied.The results showed that:(1)For the vertical dimensions(atmospheric rainfall,stemflow,throughfall,surface runoff)from high to low,the loss of total phosphorus(TP)increased,and the pro-portion of dissolved phosphorus increased from 29.29%(atmospheric rainfall)to 62.76%(surface runoff).(2)Different rainfall factors had various impacts on phosphorus loss at the different vertical levels.The accumulation of rainfall had the greatest impact on surface runoff TP loss,with the correlation coefficient reaching 0.994(P<0.01),while surface runoff particulate phosphorus loss was mostly affected by the average rainfall intensity.(3)Modifying the forest structure in water source areas can reduce the loss of TP via stemflow and throughfall,but the effect on surface runoff TP loss is variable.Thus,it is expected that this novel study can serve as a reference for improving the environmental quality of water source areas,and help in reducing phosphorus loss and controlling non-point source pollution.展开更多
Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality ...Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.展开更多
Understanding the connotation and principles of ecological compensation in water source reserve areas is the basis and guarantee for establishing and improving the ecological compensation mechanism of water source res...Understanding the connotation and principles of ecological compensation in water source reserve areas is the basis and guarantee for establishing and improving the ecological compensation mechanism of water source reserve areas.First,this paper reviews the three stages of ecological compensation research progress.Based on the review,using the theory of externality,the ecological environment system of water source reserve areas is then analyzed.This paper argues that the connotation of ecological compensation in water source reserve areas is a kind of institutional arrangement,which is designed to internalize externalities.Finally,based on the understanding of the connotation of ecological compensation in water source reserve areas,five principles for establishing and improving the ecological compensation mechanism are proposed,including the principle of fairness and justice,the principle of equivalence of equality and responsibility,the principle of flexibility and effectiveness,the principle of "earmark funds,and implementation by law," and the principle of government compensation supplemented with market compensation.展开更多
[ Objective] The research aimed to study control scheme for nonpoint source pollution in Dahe Reservoir water source protection area of Dianchi Lake basin.[ Method] On the basis of the SPOT5 satellite remote sensing i...[ Objective] The research aimed to study control scheme for nonpoint source pollution in Dahe Reservoir water source protection area of Dianchi Lake basin.[ Method] On the basis of the SPOT5 satellite remote sensing imagery in 2010 and field investigation of GPS record, ecological design for nonpoint source pollution control in Dahe Reservoir water source protection area of Dianchi Lake basin was conducted. Then, the effects of optimization measures were evaluated by the reductions of N and P outputs on different land-use types. E Resultl Control functions of the water source protection area on soil erosion and the emissions of N, P and other pollutants would be promoted after optimization. The optimization meas- ures had a significant effect for prevention and control of the non-point source pollution in the water source protection area. [ Conclusion] The re- search provided scientific basis for promoting ecological construction of the small green basin in Dahe Reservoir water source protection area of Di- anchi Lake basin.展开更多
[Objective] To study the characteristics and effects of inorganic nitrogen in east water-source and inflow rivers of Chaohu Lake. [Method] The speciation and distribution characteristics of dissolvable inorganic nitro...[Objective] To study the characteristics and effects of inorganic nitrogen in east water-source and inflow rivers of Chaohu Lake. [Method] The speciation and distribution characteristics of dissolvable inorganic nitrogen (DIN) in east water-source and inflow rivers of Chaohu Lake were investigated, and their effects on water qual- ity were examined. [Result] The concentrations of NH3-N and NO2--N were the high in flood season, and low in non-flood season, while the concentration of NO3--N pre- sented the opposite trend; the concentration of NO3--N was the highest in Shuangqiao estuary, where the pollution was the worst. DIN in Zhegao estuary and Xiaozhegao estuary was mainly caused by domestic sewage and industrial wastewaters; surface runoff and pollution from ships contribute the most to the DIN content in Shuangqiao estuary. [Conclusion] This study provided basic data and theoretical basis for the control and management of eutrophication in Chaohu Lake.展开更多
[Objective] The study aimed to discuss the application of a stereo constructed wetland to the treatment of slightly polluted source water. [Method] In this study, a new stereo constructed wetland mode was put forward,...[Objective] The study aimed to discuss the application of a stereo constructed wetland to the treatment of slightly polluted source water. [Method] In this study, a new stereo constructed wetland mode was put forward, and a pilot project of water ecological purification in Xinsheng River, the diversion channel of Shijiuyang Waterwork in Jiaxing City, were analyzed. Afterwards, the impact factors of water purification by the technology were discussed from water quality and quantity, season and climate, species configuration, management and maintenance. [Result] Under three different hydraulic loading conditions, the pilot project effectively improved water SD and DO level, and reduced SS, CODCr, NH3-N, TN and TP significantly in summer and autumn, so that effluent water quality reached surface water standard at Grade III. [Conclusion] The stereo constructed wetland mode composed of constructed wetland and underwater forest used to treat slightly polluted source water is feasible and has a good promotion prospect.展开更多
The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region w...The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region was investigated using a method combining Google Earth with the field survey.The gaps between management practices and legislation requirements were analyzed.Finally,several countermeasures for water resource protection were proposed as follows:to promote delineation in a more scientific way,to safeguard the sanctity of the law,to make better plan on water saving,and to encourage public participation in supervision and management.展开更多
Water quality index of reservoir source water were tracked during three years in a north frigid area,the effect on supplied water quality was also studied.Based on the analysis of the monitoring data during the same s...Water quality index of reservoir source water were tracked during three years in a north frigid area,the effect on supplied water quality was also studied.Based on the analysis of the monitoring data during the same season,the reservoir source water had typical and seasonal variation characteristics that was divided into four periods including the icebound period,spring period(or peach blossom period),stable period in summer and autumn and winter period.The icebound period was charactered by the typical low temperature and turbidity,pH and oxygen consumption decreased gradually showed that the gradually anaerobic trend existed in the reservoir.In May as the reservoir completely thawed,upstream water inflow and the total pollutant in the reservoir gradually increased,but the bottom of reservoir bottom was stable in the anaerobic state temporarily.The state completely disappeared,various index increased significantly in the middle of July.The water had high chroma characteristics,chroma and turbidity increased significantly in the summer and autumn(7-11months),but stability of water quality was poor because of rainfall.The reservoir gradually froze after the middle of November and the flow of water decreased.The peak of chroma appeared a month later than the water temperature.Due to the water turbidity was low,and the floc was small and light,the conventional water purification process design based on removal of turbidity achieved removal of chroma through a lot dosing of coagulant.展开更多
The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecologi...The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecological operation needs to be carried out in order to ensure ecological water use of downstream zone.The key technological support is the estimation and integrated calculation of ecological water demand.The connotation of the integrated calculation on ecological water demand lies on that the ecological water demand of different ecosystems is integrated to meet the requirements of water allocation and operation on watershed scale in terms of hydrological cycle.Considering the practical requirement of ecological operation of reservoir(s),this study proposed an integrated calculation approach of ecological water demand according to the ecological water demand in various ecosystems as well as the hydraulic connection among them;it established an integrated calculation model of regional ecological water demand by means of the distributed hydrological model,and studied the integrated calculation in Yalong River basin which is the source area of the west route of South-North Water Transfer Project as an example.The results indicated that the integrated calculation model more effectively combined the ecological water demand and hydraulic connection of ecosystems in time and space,compared with the lumped water balance analysis,since the former conquered the defect of insufficient ecological water source and supplement on multiple spatial and temporal scales,and met the demand of ecological operation of reservoir(s).展开更多
基金supported by Zhejiang A&F University(2022LFR083)Key R&D Program of Zhejiang Province(2021C02038)the International Centre for Bamboo and Rattan(1632021006)。
文摘Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be controlled by reducing the amount of fertilizer applied,but pollution caused by soil and water erosion in hilly areas can only be controlled by conservation forests.The catchment area around Fushi Reservoir was selected as a test site and mechanisms of N loss from a vertical spatial perspective through field observations were determined.The main N losses occurred from June to September,accounting for 85.9-95.9%of the annual loss,with the losses in June and July accounting for 46.0%of the total,and in August and September for 41.9%.The N leakage from the water source area was effectively reduced by 38.2%through the optimization of the stand structure of the conservation forests.Establishing well-structured forests for water conservation is crucial to ensure the security of drinking water.This preliminary research lays the foundation for revealing then loss mechanisms in water source areas and improving the control of non-point source pollution in these areas.
文摘Protection planning is made for rural centralized drinking water source areas according to current situations of rural drinking water and existing problems of centralized drinking water source areas in Chongqing,and in combination with survey,analysis and evaluation of urban-rural drinking water source areas in whole city.There are engineering measures and non-engineering measures,to guarantee drinking water security of rural residents,improve rural ecological environment,realize sustainable use of water resource,and promote sustainable development of society.Engineering measures include conservation and protection of water resource,ecological restoration,isolation,and comprehensive control of pointsource and area-source pollution.Non-engineering measures include construction of monitoring system for drinking water source area,construction of security information system for rural centralized drinking water source area,and construction of emergency mechanism for water pollution accidents in rural water source areas.
基金Supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China(Nos.2012ZX07103-005-01,2012ZX07103-004-02)the National Natural Science Foundation of China(Nos.41171366,41471075)the Science Foundation of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(No.NIGLAS2012135013)
文摘We investigated seasonal variations in cyanobacterial biomass and the forms of its dominant population (M. aeruginosa) and their correlation with environmental factors in the water source area of Chaohu City, China from December 2011 to October 2012. The results show that species belonging to the phylum Cyanophyta occupied the maximum proportion of phytoplankton biomass, and that the dominant population in the water source area of Chaohu City was M. aeruginosa. The variation in cyanobacterial biomass from March to August 2012 was well fitted to the logistic growth model. The growth rate of cyanobacteria was the highest in June, and the biomass of cyanobacteria reached a maximum in August. From February to March 2012, the main form of M. aeruginosa was the single-cell form; M. aeruginosa colonies began to appear from April, and blooms appeared on the water surface in May. The maximum diameter of the colonies was recorded in July, and then gradually decreased from August. The diameter range ofM. aeruginosa colonies was 18.37-237.77μm, and most of the colonies were distributed in the range 20-200μm, comprising 95.5% of the total number of samples. Temperature and photosynthetically active radiation may be the most important factors that influenced the annual variation in M. aeruginosa biomass and forms. The suitable temperature for cyanobaeterial growth was in the range of 15-30℃. In natural water bodies, photosynthetically active radiation had a significant positive influence on the colonial diameter of M. aeruginosa (P〈0.01).
文摘The Shitoukoumen Reservoir is one of main drinking water source areas in Changchun City,and there is a contradiction between the protection and the economic development of water source areas. In this paper,the primary and secondary reserves in drinking water source area of the Shitoukoumen Reservoir are taken as research objects. Based on the theory of ecological compensation,the ecological compensation standard is accounted and determined from different perspectives,and the suggestion of the phased ecological compensation in water source areas is proposed.
基金the Fundamental Research Funds for the Central Institutes(No.CAFYBB2019SY014)the National Natural Science Foundation of China,(No.41807151)the Special Fund for Cooperation of Zhejiang Province and the Chinese Academy of Forestry(2021SY12).
文摘Maintaining drinking water security is a global issue,and phosphorus is a limiting factor affecting drinking water quality.Hence,this study took Fushi Reservoir as a test area,and set up field runoff observation plots around the reservoir catchment,which is covered by moso bamboo stands.Through field observation,the vertical variation of phosphorus loss in different stands of moso bamboo was initially studied.The results showed that:(1)For the vertical dimensions(atmospheric rainfall,stemflow,throughfall,surface runoff)from high to low,the loss of total phosphorus(TP)increased,and the pro-portion of dissolved phosphorus increased from 29.29%(atmospheric rainfall)to 62.76%(surface runoff).(2)Different rainfall factors had various impacts on phosphorus loss at the different vertical levels.The accumulation of rainfall had the greatest impact on surface runoff TP loss,with the correlation coefficient reaching 0.994(P<0.01),while surface runoff particulate phosphorus loss was mostly affected by the average rainfall intensity.(3)Modifying the forest structure in water source areas can reduce the loss of TP via stemflow and throughfall,but the effect on surface runoff TP loss is variable.Thus,it is expected that this novel study can serve as a reference for improving the environmental quality of water source areas,and help in reducing phosphorus loss and controlling non-point source pollution.
基金supported by the National Natural Science Foundation of China(Grant No.31670473)the Wuhan Institute of Technology funding to Dr.Siyue Li(Grant No.21QD02).
文摘Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.
基金supported by National Social Science Fund "Study on the construction of ecological compensation system and the related policies of the water source protection zone"[Grant Number 14BJY027]Project of Humanities and Social Science Fund of Ministry of Education "Calculation and compensation method of ecological compensation in River Basin"[Grant Number 13YJA790025]
文摘Understanding the connotation and principles of ecological compensation in water source reserve areas is the basis and guarantee for establishing and improving the ecological compensation mechanism of water source reserve areas.First,this paper reviews the three stages of ecological compensation research progress.Based on the review,using the theory of externality,the ecological environment system of water source reserve areas is then analyzed.This paper argues that the connotation of ecological compensation in water source reserve areas is a kind of institutional arrangement,which is designed to internalize externalities.Finally,based on the understanding of the connotation of ecological compensation in water source reserve areas,five principles for establishing and improving the ecological compensation mechanism are proposed,including the principle of fairness and justice,the principle of equivalence of equality and responsibility,the principle of flexibility and effectiveness,the principle of "earmark funds,and implementation by law," and the principle of government compensation supplemented with market compensation.
基金Supported by Science Technology Key Special Item of the National Water Pollution Control and Treatment,China (2009ZX07102-004)
文摘[ Objective] The research aimed to study control scheme for nonpoint source pollution in Dahe Reservoir water source protection area of Dianchi Lake basin.[ Method] On the basis of the SPOT5 satellite remote sensing imagery in 2010 and field investigation of GPS record, ecological design for nonpoint source pollution control in Dahe Reservoir water source protection area of Dianchi Lake basin was conducted. Then, the effects of optimization measures were evaluated by the reductions of N and P outputs on different land-use types. E Resultl Control functions of the water source protection area on soil erosion and the emissions of N, P and other pollutants would be promoted after optimization. The optimization meas- ures had a significant effect for prevention and control of the non-point source pollution in the water source protection area. [ Conclusion] The re- search provided scientific basis for promoting ecological construction of the small green basin in Dahe Reservoir water source protection area of Di- anchi Lake basin.
基金Supported by the Special Fund for the Control and Management of Chaohu Lake of the National Key Technology R&D Program,China(2008ZX07103-005)the Special Fund for the Control and Management of Huaihe River of the National Key Technology R&D Program,China(2008ZX07010-004)+1 种基金National Natural Science Foundation of China(40073030,40972092,41172121)the Natural Science Foundation of Anhui Province,China(090413083)~~
文摘[Objective] To study the characteristics and effects of inorganic nitrogen in east water-source and inflow rivers of Chaohu Lake. [Method] The speciation and distribution characteristics of dissolvable inorganic nitrogen (DIN) in east water-source and inflow rivers of Chaohu Lake were investigated, and their effects on water qual- ity were examined. [Result] The concentrations of NH3-N and NO2--N were the high in flood season, and low in non-flood season, while the concentration of NO3--N pre- sented the opposite trend; the concentration of NO3--N was the highest in Shuangqiao estuary, where the pollution was the worst. DIN in Zhegao estuary and Xiaozhegao estuary was mainly caused by domestic sewage and industrial wastewaters; surface runoff and pollution from ships contribute the most to the DIN content in Shuangqiao estuary. [Conclusion] This study provided basic data and theoretical basis for the control and management of eutrophication in Chaohu Lake.
基金Supported by National Science and Technology Project of Water Pollution Control and Management(2008ZX07421-001)
文摘[Objective] The study aimed to discuss the application of a stereo constructed wetland to the treatment of slightly polluted source water. [Method] In this study, a new stereo constructed wetland mode was put forward, and a pilot project of water ecological purification in Xinsheng River, the diversion channel of Shijiuyang Waterwork in Jiaxing City, were analyzed. Afterwards, the impact factors of water purification by the technology were discussed from water quality and quantity, season and climate, species configuration, management and maintenance. [Result] Under three different hydraulic loading conditions, the pilot project effectively improved water SD and DO level, and reduced SS, CODCr, NH3-N, TN and TP significantly in summer and autumn, so that effluent water quality reached surface water standard at Grade III. [Conclusion] The stereo constructed wetland mode composed of constructed wetland and underwater forest used to treat slightly polluted source water is feasible and has a good promotion prospect.
文摘The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region was investigated using a method combining Google Earth with the field survey.The gaps between management practices and legislation requirements were analyzed.Finally,several countermeasures for water resource protection were proposed as follows:to promote delineation in a more scientific way,to safeguard the sanctity of the law,to make better plan on water saving,and to encourage public participation in supervision and management.
基金Sponsored by the Science and Technology Research Project of Heilongjiang Province Education Department(Grant No.12513088)PromisingYoungsters Training Program of Heilongjiang University of Science and Technology(Grant No.Q20120201)
文摘Water quality index of reservoir source water were tracked during three years in a north frigid area,the effect on supplied water quality was also studied.Based on the analysis of the monitoring data during the same season,the reservoir source water had typical and seasonal variation characteristics that was divided into four periods including the icebound period,spring period(or peach blossom period),stable period in summer and autumn and winter period.The icebound period was charactered by the typical low temperature and turbidity,pH and oxygen consumption decreased gradually showed that the gradually anaerobic trend existed in the reservoir.In May as the reservoir completely thawed,upstream water inflow and the total pollutant in the reservoir gradually increased,but the bottom of reservoir bottom was stable in the anaerobic state temporarily.The state completely disappeared,various index increased significantly in the middle of July.The water had high chroma characteristics,chroma and turbidity increased significantly in the summer and autumn(7-11months),but stability of water quality was poor because of rainfall.The reservoir gradually froze after the middle of November and the flow of water decreased.The peak of chroma appeared a month later than the water temperature.Due to the water turbidity was low,and the floc was small and light,the conventional water purification process design based on removal of turbidity achieved removal of chroma through a lot dosing of coagulant.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51021066)the State Key Development Program for Basic Research of China (Grant No. 2010CB951102)
文摘The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecological operation needs to be carried out in order to ensure ecological water use of downstream zone.The key technological support is the estimation and integrated calculation of ecological water demand.The connotation of the integrated calculation on ecological water demand lies on that the ecological water demand of different ecosystems is integrated to meet the requirements of water allocation and operation on watershed scale in terms of hydrological cycle.Considering the practical requirement of ecological operation of reservoir(s),this study proposed an integrated calculation approach of ecological water demand according to the ecological water demand in various ecosystems as well as the hydraulic connection among them;it established an integrated calculation model of regional ecological water demand by means of the distributed hydrological model,and studied the integrated calculation in Yalong River basin which is the source area of the west route of South-North Water Transfer Project as an example.The results indicated that the integrated calculation model more effectively combined the ecological water demand and hydraulic connection of ecosystems in time and space,compared with the lumped water balance analysis,since the former conquered the defect of insufficient ecological water source and supplement on multiple spatial and temporal scales,and met the demand of ecological operation of reservoir(s).