The fluid-in-cell (FLIC) approach of Gentry et al. (1966) is extended to second-order accuracy in space and applied to solve the 2D shallow water equations with topography. The FLIC method can be interpreted in a ...The fluid-in-cell (FLIC) approach of Gentry et al. (1966) is extended to second-order accuracy in space and applied to solve the 2D shallow water equations with topography. The FLIC method can be interpreted in a finite volume sense, it therefore conserves both water mass and momentum. Like the original FLIC method the second-order FLIC method presented here is able to handle wetting-drying fronts without any special treatment. Moreover, the resulting method is shock capturing and well-balanced, satisfying both the C- and extended C-properties exactly. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.展开更多
基金supported by the International Hurricane Research Center,Florida International University
文摘The fluid-in-cell (FLIC) approach of Gentry et al. (1966) is extended to second-order accuracy in space and applied to solve the 2D shallow water equations with topography. The FLIC method can be interpreted in a finite volume sense, it therefore conserves both water mass and momentum. Like the original FLIC method the second-order FLIC method presented here is able to handle wetting-drying fronts without any special treatment. Moreover, the resulting method is shock capturing and well-balanced, satisfying both the C- and extended C-properties exactly. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.