Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as ...Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as they tend to be laborious,time-consuming,or technically difficult.Disinfection byproducts(DBPs)are a family of well-known secondary pollutants formed by the reactions of chemical disinfectants with DBP precursors during water disinfection treatment.Since DBP precursors have various origins(e.g.,natural,domestic,industrial,and agricultural sources),and since the formation of DBPs from different precursors in the presence of specific disinfectants is distinctive,we argue that DBPs and DBP precursors can serve as alternative indicators to assess the contamination in water sources and identify pollution origins.After providing a retrospective of the origins of DBPs and DBP precursors,as well as the specific formation patterns of DBPs from different precursors,this article presents an overview of the impacts of various natural and anthropogenic factors on DBPs and DBP precursors in drinking water sources.In practice,the DBPs(i.e.,their concentration and speciation)originally present in source water and the DBP precursors determined using DBP formation potential tests—in which water samples are dosed with a stoichiometric excess of specific disinfectants in order to maximize DBP formation under certain reaction conditions—can be considered as alternative metrics.When jointly used with other water quality parameters(e.g.,dissolved organic carbon,dissolved organic nitrogen,fluorescence,and molecular weight distribution)and specific contaminants of emerging concern(e.g.,certain pharmaceuticals and personal care products),DBPs and DBP precursors in drinking water sources can provide a more comprehensive picture of water pollution for better managing water resources and ensuring human health.展开更多
Jihei buffer zone of the Second Songhua River in lower reaches of Songyuan City of the Songhua River was taken as the research object,and the current water quality,point source and non-point source pollution,and regio...Jihei buffer zone of the Second Songhua River in lower reaches of Songyuan City of the Songhua River was taken as the research object,and the current water quality,point source and non-point source pollution,and regional social and economic conditions of the buffer zone and its upstream water functional area were investigated.According to pollution sources and pollutant carrying capacity of water functional areas,analysis on main pollution factors in buffer zone was completed.展开更多
Luan River is the main water source in Beijing-Tianjin-Hebei region,northern China,where the groundwater system is vulnerable and pollution issue is serious.It is significant for regional groundwater resources protect...Luan River is the main water source in Beijing-Tianjin-Hebei region,northern China,where the groundwater system is vulnerable and pollution issue is serious.It is significant for regional groundwater resources protection to identify the hydrogeochemistry evolution and affecting factors along flow direction occurred in the upper reaches,especially the surface water-groundwater(SWGW)conversion relationship.In this study,recharge,conversion and geochemistry evolution of SW and GW were elucidated based on physical-hydrochemical indicators and stable isotopes in 36 GW samples and 20 SW samples,which were collected in July 2019 and July 2020.The factor analysis was further utilized to determine the main factors responsible for regional hydrogeochemical evolution.Results indicate that GW recharged SW in plateau area,and SW and GW recharged each other in typical Alpine valley area.The hydrochemical types are HCO3-Ca·Mg and HCO3-Ca,and the hydrochemical evolution is dominated by weathering of silicate and carbonate minerals.The cation exchange adsorption has minor impact on groundwater hydrochemistry.The rise of SO42-and NO3-contents in groundwater is related to industrial and agricultural activities.The main controlling factors of SW hydrochemical components included recharge from groundwater,industrial and mining activities,explaining 90.04%of data variance.However,water-rock interaction,agricultural and domestic sewage are responsible for GW quality,accounting for 83.38%.展开更多
The presence of municipal wastewater at the intake of a major drinking water treatment facility located on Lake Ontario was examined using fluorescence data collected during a period of continuous monitoring.In additi...The presence of municipal wastewater at the intake of a major drinking water treatment facility located on Lake Ontario was examined using fluorescence data collected during a period of continuous monitoring.In addition,controlled mixing of lake water and wastewater sampled from a local treatment facility were conducted using a bench-scale fluorescence system to quantify observed changes in natural organic matter.Multivariate linear regression was applied to components derived from parallel factors analysis.The resulting mean absolute error for predicted wastewater level was 0.22%(V/V,wastewater/lake water),indicating that wastewater detection at below 1.0%(V/V)was possible.Analyses of sucralose,a wastewater indicator,were conducted for treated wastewater as well as surface water collected at two intake locations on Lake Ontario.Results suggested minimal wastewater contribution at the drinking water intake.A wastewater detection model using a moving baseline was developed and applied to continuous fluorescence data collected at one of the drinking water intakes,which agreed well with sucralose results.Furthermore,the simulated addition of 1.0%(V/V)of wastewater/wastewater was detectable in 89%of samples analyzed,demonstrating the utility of fluorescence-based wastewater monitoring.展开更多
基金supported by the National Natural Science Foundation of China(52325001,52170009,and 52091542)the National Key Research and Development Program of China(2021YFC3200700)+3 种基金the Program of Shanghai Academic Research Leader,China(21XD1424000)the International Cooperation Project of Shanghai Science and Technology Commission(20230714100)the Key-Area Research and Development Program of Guangdong Province(2020B1111350001)Tongji University Youth 100 Program.
文摘Tracing the contamination origins in water sources and identifying the impacts of natural and human processes are essential for ecological safety and public health.However,current analysis approaches are not ideal,as they tend to be laborious,time-consuming,or technically difficult.Disinfection byproducts(DBPs)are a family of well-known secondary pollutants formed by the reactions of chemical disinfectants with DBP precursors during water disinfection treatment.Since DBP precursors have various origins(e.g.,natural,domestic,industrial,and agricultural sources),and since the formation of DBPs from different precursors in the presence of specific disinfectants is distinctive,we argue that DBPs and DBP precursors can serve as alternative indicators to assess the contamination in water sources and identify pollution origins.After providing a retrospective of the origins of DBPs and DBP precursors,as well as the specific formation patterns of DBPs from different precursors,this article presents an overview of the impacts of various natural and anthropogenic factors on DBPs and DBP precursors in drinking water sources.In practice,the DBPs(i.e.,their concentration and speciation)originally present in source water and the DBP precursors determined using DBP formation potential tests—in which water samples are dosed with a stoichiometric excess of specific disinfectants in order to maximize DBP formation under certain reaction conditions—can be considered as alternative metrics.When jointly used with other water quality parameters(e.g.,dissolved organic carbon,dissolved organic nitrogen,fluorescence,and molecular weight distribution)and specific contaminants of emerging concern(e.g.,certain pharmaceuticals and personal care products),DBPs and DBP precursors in drinking water sources can provide a more comprehensive picture of water pollution for better managing water resources and ensuring human health.
文摘Jihei buffer zone of the Second Songhua River in lower reaches of Songyuan City of the Songhua River was taken as the research object,and the current water quality,point source and non-point source pollution,and regional social and economic conditions of the buffer zone and its upstream water functional area were investigated.According to pollution sources and pollutant carrying capacity of water functional areas,analysis on main pollution factors in buffer zone was completed.
基金funded by the Ecological Civilization Demonstration Area Comprehensive Geological Survey Project“Hydrogeological Survey of Chengde Area”(No.DD20200522)the National Natural Science Foundation of China(Nos.41521001 and 42177078)the“111”Program of China(No.B18049).
文摘Luan River is the main water source in Beijing-Tianjin-Hebei region,northern China,where the groundwater system is vulnerable and pollution issue is serious.It is significant for regional groundwater resources protection to identify the hydrogeochemistry evolution and affecting factors along flow direction occurred in the upper reaches,especially the surface water-groundwater(SWGW)conversion relationship.In this study,recharge,conversion and geochemistry evolution of SW and GW were elucidated based on physical-hydrochemical indicators and stable isotopes in 36 GW samples and 20 SW samples,which were collected in July 2019 and July 2020.The factor analysis was further utilized to determine the main factors responsible for regional hydrogeochemical evolution.Results indicate that GW recharged SW in plateau area,and SW and GW recharged each other in typical Alpine valley area.The hydrochemical types are HCO3-Ca·Mg and HCO3-Ca,and the hydrochemical evolution is dominated by weathering of silicate and carbonate minerals.The cation exchange adsorption has minor impact on groundwater hydrochemistry.The rise of SO42-and NO3-contents in groundwater is related to industrial and agricultural activities.The main controlling factors of SW hydrochemical components included recharge from groundwater,industrial and mining activities,explaining 90.04%of data variance.However,water-rock interaction,agricultural and domestic sewage are responsible for GW quality,accounting for 83.38%.
基金funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Industrial Chair in Drinking Water Research at the University of Toronto
文摘The presence of municipal wastewater at the intake of a major drinking water treatment facility located on Lake Ontario was examined using fluorescence data collected during a period of continuous monitoring.In addition,controlled mixing of lake water and wastewater sampled from a local treatment facility were conducted using a bench-scale fluorescence system to quantify observed changes in natural organic matter.Multivariate linear regression was applied to components derived from parallel factors analysis.The resulting mean absolute error for predicted wastewater level was 0.22%(V/V,wastewater/lake water),indicating that wastewater detection at below 1.0%(V/V)was possible.Analyses of sucralose,a wastewater indicator,were conducted for treated wastewater as well as surface water collected at two intake locations on Lake Ontario.Results suggested minimal wastewater contribution at the drinking water intake.A wastewater detection model using a moving baseline was developed and applied to continuous fluorescence data collected at one of the drinking water intakes,which agreed well with sucralose results.Furthermore,the simulated addition of 1.0%(V/V)of wastewater/wastewater was detectable in 89%of samples analyzed,demonstrating the utility of fluorescence-based wastewater monitoring.