期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Quantification of irrigation water transport processes in ZiZiphus jujuba garden using water stable isotopes
1
作者 ZHONG Xiaofei ZHANG Mingjun +3 位作者 CHE Cunwei LIU Zechen LI Beibei ZHANG Yuanyuan 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3263-3274,共12页
ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.T... ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.The irrigation water infiltration in Z.jujuba gardens is complex,and understanding its mechanisms is essential for efficient water use and sustainable agriculture.This knowledge helps ensure the long-term success of jujuba cultivation.This paper describes a field experiment that investigates the infiltration process of irrigation water from Z.jujuba garden and quantifies the contribution of irrigation water to soil water at different depths using the MixSIAR model.According to the FC(Field water holding Capacity)of Z.jujuba,irrigation experiments with three volumes of 80%FC,60%FC,and 40%FC are set up in this study.The study finds that water retention is better in Z.jujuba garden soils with a higher proportion of coarse gravel in the soil particle composition.Soil water content exhibits a gradient change after irrigation,with deeper wetting front transport depth observed with increased irrigation water.Additionally,there is correlation between soil temperature and soil water content.The soil water in Z.jujuba garden generally exhibits a preferential flow signal in the 0-40 cm range.Below 40 cm,a piston flow pattern dominates.The rate of soil water infiltration increases with the amount of irrigation water.In the 0-40 cm range of the soil vertical profile,irrigation water was the main contributor to soil water.Z.jujuba demonstrated flexibility in water uptake,primarily absorbing soil water at depths of 0-40 cm.For optimal growth of Z.jujuba at this stage,40%FC irrigation is recommended.The results are expected to be valuable future irrigation practices and land use planning for Z.jujuba garden in arid zones,supporting sustainable agricultural development and water management. 展开更多
关键词 water stable isotopes Different irrigation volumes ZiZiphus jujuba Irrigation water infiltration process MixSIAR model
下载PDF
Effective root depth and water uptake ability of winter wheat by using water stable isotopes in the Loess Plateau of China 被引量:2
2
作者 Wang Bing Zheng Lijian +3 位作者 Ma Juanjuan Sun Xihuan Guo Xianghong Guo Fei 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第6期27-35,共9页
A field experiment using PVC growth tubes was conducted in the Loess Plateau of China to determine the effective root depth(ERD)of winter wheat and its relationship with root distributions and soil water conditions.Th... A field experiment using PVC growth tubes was conducted in the Loess Plateau of China to determine the effective root depth(ERD)of winter wheat and its relationship with root distributions and soil water conditions.The water stable isotopes technique was used to estimate the water uptake contributions of different root depths during the growth stages.On the basis of IsoSource and the Romero-Saltos model,the ERD was 0-40 cm in the majority of the growth stage.However,in the heading and filling stages,the ERD could reach 60%-75%of the maximum root depth.Furthermore,the contributions to water uptake of different root depths were correlated with variations in soil water and root length density(r=0.395 and 0.368,respectively;p<0.05).However,by path analysis,the low decisive coefficient indicated that root distribution and soil water content did not always follow the same trend as water uptake.The conclusions of this study can help with understanding winter wheat water uptake mechanisms in arid and semi-arid regions and increasing water use efficiency. 展开更多
关键词 effective root depth water stable isotopes water uptake root distribution soil water content
原文传递
Estimation of evaporation losses based on stable isotopes of stream water in a mountain watershed
3
作者 Zhongcong Sun Chaochen Hu +3 位作者 Di Wu Guopeng Chen Xiaoqiang Lu Xueyan Liu 《Acta Geochimica》 EI CAS CSCD 2021年第2期176-183,共8页
Water stable isotopes(δ^(2) H andδ^(18)O)can record surface water evaporation,which is an important hydrological process for understanding watershed structure and function evolution.However,the isotopic estimation o... Water stable isotopes(δ^(2) H andδ^(18)O)can record surface water evaporation,which is an important hydrological process for understanding watershed structure and function evolution.However,the isotopic estimation of water evaporation losses in the mountain watersheds remains poorly explored,which hinders understanding spatial variations of hydrological processes and their relationships with the temperature and vegetation.Here we investigatedδ^(2) H,δ^(18)O,and d-excess values of stream water along an altitude gradient of 2130 to 3380 m in Guan’egou mountain watershed at the east edge of the Qinghai-Tibet Plateau in China.The meanδ^(2) H(-69.6‰±2.6‰),δ^(18)O(-10.7‰±0.3‰),and dexcess values(16.0‰±1.4‰)of stream water indicate the inland moisture as the major source of precipitation in study area.Water stable isotopes increase linearly with decreasing altitudes,based on which we estimated the fractions of water evaporation losses along with the altitude and their variations in different vegetations.This study provides an isotopic evaluation method of water evaporation status in mountain watersheds,the results are useful for further understanding the relationship between hydrological processes and ecosystem function under the changing climate surrounding the Qinghai-Tibet Plateau. 展开更多
关键词 water stable isotopes Mountain watersheds water evaporation losses Altitude effect Rayleigh fractionation
下载PDF
Linkage between precipitation isotopes and water vapor sources in the monsoon margin:Evidence from arid areas of Northwest China
4
作者 CHEN Fenli ZHANG Qiuyan +3 位作者 WANG Shengjie CHEN Jufan GAO Minyan Mohd Aadil BHAT 《Journal of Arid Land》 SCIE CSCD 2024年第3期355-372,共18页
The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is u... The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area. 展开更多
关键词 water vapor monsoon margin stable water isotope transport trajectory air mass d-excess Δ18O δD
下载PDF
Comparison of isotope-based linear and Bayesian mixing models in determining moisture recycling ratio
5
作者 XIAO Yanqiong WANG Liwei +5 位作者 WANG Shengjie Kei YOSHIMURA SHI Yudong LI Xiaofei Athanassios A ARGIRIOU ZHANG Mingjun 《Journal of Arid Land》 SCIE CSCD 2024年第6期739-751,共13页
Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,... Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds. 展开更多
关键词 moisture recycling stable water isotope linear mixing model Bayesian mixing model China
下载PDF
Geochemistry of Thermal Waters of Continental Margin of Far East of Russia
6
作者 Ivan V. BRAGIN Georgy A. CHELNOKOV +2 位作者 Oleg V. CHUDAEV Natalia A. KHARITONOVA Sergey V. VYSOTSKIY 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第1期276-284,共9页
Studied waters belong to warm (T=30-50℃), alkaline (pH=8.9-9.3), low mineralized (TDS〈235 mg/l) Na-HCO3 or Na-SO4-HCO3 thermal waters with high content of SiO2 (up to 81 mg/1) and F (up to 3.9 mg/l), occur... Studied waters belong to warm (T=30-50℃), alkaline (pH=8.9-9.3), low mineralized (TDS〈235 mg/l) Na-HCO3 or Na-SO4-HCO3 thermal waters with high content of SiO2 (up to 81 mg/1) and F (up to 3.9 mg/l), occur on modern volcano-tectonic rejuvenated areas of Eastern Sikhote-Alin orogenic belt. Low 3He concentration as well as N2/O2 and N2/Ar ratios exclude influence of deep mantle fluid. New rare earth element data constrain our understanding of water-rock interaction occurring in the water source region. Meteoric origin of waters is proved by stable isotope values varying from -71%o to -136.1‰ and from -10.8‰ to -18.8%o for δ^2H and δ^18O respectively. REE patterns reflect high pH, resultfing from water-rock interaction and oxidative conditions. Calculations of deep aquifer temperature using Na-K and quartz geothermometers show 116.8-131.1℃ and 82.2-125.8℃ respectively. Presence of deep faults both with abnormal thermal gradient (-45- 50 K/km) define unique geochemical shape of thermal waters of Sikhote-Alin, area, where no present volcanic activity is registered. 展开更多
关键词 thermal waters water-rock interaction stable water isotopes rare earth elements in thermal waters
下载PDF
Spatial variability ofδ^(18)O andδ^(2)H in North Pacific and Arctic Oceans surface seawater
7
作者 LI Zhiqiang DING Minghu +2 位作者 WANG Yetang DU Zhiheng DOU Tingfeng 《Advances in Polar Science》 CSCD 2022年第3期244-252,共9页
This study presents new observations of stable isotopic composition(δ^(18)O,δ^(2)H and deuterium excess)in surface waters of the North Pacific and Arctic Oceans that were collected during the sixth Chinese National ... This study presents new observations of stable isotopic composition(δ^(18)O,δ^(2)H and deuterium excess)in surface waters of the North Pacific and Arctic Oceans that were collected during the sixth Chinese National Arctic Research Expedition(CHINARE)from mid-summer to early autumn 2014.Seawaterδ^(18)O andδ^(2)H decrease with increasing latitudes from 39°N to 75°N,likely a result of spatial variability in evaporation/precipitation processes.This explanation is further confirmed by comparing theδ^(18)O-δ^(2)H relationship of seawater with that of precipitation.However,effects of freshwater inputs on seawater stable isotopic composition are also identified at 30°N-39°N.Furthermore,we find a non-significant relationship between the isotopic parameters(δ^(2)H andδ^(18)О)and salinity from 73°N northwards in the Arctic Ocean,implying that sea ice melting/formation may have some effect.These results suggest that the isotopic parametersδ^(2)H andδ^(18)Оare useful for tracing marine hydrological processes. 展开更多
关键词 stable water isotopes seawater salinity surface seawater North Pacific Ocean Arctic Ocean
下载PDF
GCM Simulations of Stable Isotopes in the Water Cycle in Comparison with GNIP Observations over East Asia 被引量:9
8
作者 章新平 孙治安 +3 位作者 关华德 张新主 吴华武 黄一民 《Acta meteorologica Sinica》 SCIE 2012年第4期420-437,共18页
In this paper, we examine the performance of four isotope incorporated GCMs, i.e., ECHAM4 (Univer- sity of Hamburg), HadCM3 (Hadley Centre), GISS E (Goddard Institute of Space Sciences), and MUGCM (Melbourne Un... In this paper, we examine the performance of four isotope incorporated GCMs, i.e., ECHAM4 (Univer- sity of Hamburg), HadCM3 (Hadley Centre), GISS E (Goddard Institute of Space Sciences), and MUGCM (Melbourne University), by comparing the model results with GNIP (Global Network of Isotopes in Precip- itation) observations. The spatial distributions of mean annual δD and mean annual deuterium excess d in precipitation, and the relationship between δ18O and δD in precipitation, are compared between GCMs and GNIP data over East Asia. Overall, the four GCMs reproduce major characteristics of δD in precipitation as observed by GNIP. Among the four models, the results of ECHAM4 and GISS E are more consistent with GNIP observed precipitation δD distribution. The simulated d distributions are less consistent with the GNIP results. This may indicate that kinetic fractionation processes are not appropriately represented in the isotopic schemes of GCMs. The GCM modeled MWL (meteoric water line) slopes are close to the GNIP derived MWL, but the simulated MWL intercepts are significantly overestimated. This supports that the four isotope incorporated GCMs may not represent the kinetic fractionation processes well. In term of LMWLs (local meteoric water lines), the simulated LMWL slopes are similar to those from GNIP observa- tions, but slightly overestimated for most locations. Overall, ECHAM4 has better capability in simulating MWL and LMWLs, followed by GISS E. Some isotopic functions (especially those related to kinetic frac- tionation) and their parameterizations in GCMs may have caused the discrepancy between the simulated and GNIP observed results. Future work is recommended to improve isotopic function parameterization on the basis of the high-resolution isotope observations. 展开更多
关键词 GCM GNIP stable isotope deuterium excess meteoric water line
原文传递
Distinguishing the Regional Atmospheric Controls on Precipitation Isotopic Variability in the Central-Southeast Portion of Brazil
9
作者 Vinícius dos SANTOS Peter MARSHALL FLEMING +6 位作者 Luís HENRIQUE MANCINI Stela DALVA SANTOS COTA Graziele Beatriz de LIMA Rafaela RODRIGUES GOMES Roberto Eduardo KIRCHHEIM Ricardo SANCHÉZ-MURILLO Didier GASTMANS 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第10期1693-1708,I0018-I0020,共19页
Precipitation isotope ratios(O and H)record the history of water phase transitions and fractionation processes during moisture transport and rainfall formation.Here,we evaluated the isotopic composition of precipitati... Precipitation isotope ratios(O and H)record the history of water phase transitions and fractionation processes during moisture transport and rainfall formation.Here,we evaluated the isotopic composition of precipitation over the central-southeastern region of Brazil at different timescales.Monthly isotopic compositions were associated with classical effects(rainfall amount,seasonality,and continentality),demonstrating the importance of vapor recirculation processes and different regional atmospheric systems(South American Convergence Zone-SACZ and Cold Fronts-CF).While moisture recycling and regional atmospheric processes may also be observed on a daily timescale,classical effects such as the amount effect were not strongly correlated(δ^(18)O-precipitation rate r≤-0.37).Daily variability revealed specific climatic features,such asδ^(18)O depleted values(~-6‰to-8‰)during the wet season were associated with strong convective activity and large moisture availability.Daily isotopic analysis revealed the role of different moisture sources and transport effects.Isotope ratios combined with d-excess explain how atmospheric recirculation processes interact with convective activity during rainfall formation processes.Our findings provide a new understanding of rainfall sampling timescales and highlight the importance of water isotopes to decipher key hydrometeorological processes in a complex spatial and temporal context in central-southeastern Brazil. 展开更多
关键词 PRECIPITATION stable water isotopes d-excess moisture source and transport southern Atlantic Ocean and Amazon
下载PDF
Stable isotopes in atmospheric water vapour:Patterns,mechanisms and perspectives
10
作者 Baijun SHANG Jing GAO +1 位作者 Gebanruo CHEN Yuqing WU 《Science China Earth Sciences》 SCIE EI CAS 2024年第12期3789-3813,共25页
Stable isotopes in atmospheric water vapour are important tracers for investigating water vapour transport, mixing and phase transition. In recent years, with the rapid development of analytical techniques, research o... Stable isotopes in atmospheric water vapour are important tracers for investigating water vapour transport, mixing and phase transition. In recent years, with the rapid development of analytical techniques, research on water vapour stable isotopes has been widely conducted worldwide. In this review, we summarize basic theory and examine various methodologies employed to study stable isotopes in atmospheric water vapour, ranging from traditional collection methods to more recent advancements in laser absorption spectroscopy, satellite remote sensing, and isotope general circulation models(iGCMs). We pointed out the critical role played by isotopes in tracing moisture sources, understanding precipitation patterns, and reconstructing past climates. We identify gaps in knowledge, particularly in the representation of isotopic processes in climate models. Furthermore, we highlighted future research should focus on enhancing isotopic measurement technologies, integrating isotopic data with climatic indicators to improve model accuracy, and expanding isotopic studies to underserved water cycle dynamics. This review aims to provide suggestions for future investigations to deepen our understanding of atmospheric water vapour stable isotopes and their significance in climatology and hydrology. 展开更多
关键词 water vapour stable isotopes water sources Precipitation patterns Paleoclimate reconstructions
原文传递
Isotopic evidence for soil water sources and reciprocal movement in a semi-arid degraded wetland:Implications for wetland restoration 被引量:1
11
作者 Yuanchun Zou Sijian Zhang +2 位作者 Xiaofei Yu Guobin Fu Xianguo Lu 《Fundamental Research》 CSCD 2023年第6期861-867,共7页
Understanding water dynamics is a prerequisite for the restoration of degraded ecosystems in arid and semiarid regions.In this study,we carried out δD and δ^(18)O analyses of precipitation,unsaturated soil water,ove... Understanding water dynamics is a prerequisite for the restoration of degraded ecosystems in arid and semiarid regions.In this study,we carried out δD and δ^(18)O analyses of precipitation,unsaturated soil water,overland flow,surface runoff,and groundwater samples from a seasonally flooded wetland in the Momoge National Nature Reserve of the Songnen Plain,Northeast China,to identify the water sources and understand the mechanisms of unsaturated soil water movement.Unsaturated soil water content(W/W%)at every 20 cm along with a soil profile(0–100 cm)was collected during the growing season,and the HYDRUS-1D model was used to simulate temporal-spatial variations.The results showed that the local meteoric water line(δD=5.90δ18O-7.34,R2=0.95)had a smaller slope and intercept than the global meteoric water line because of strong evaporation at our study site under semi-arid climate.The groundwater was partly recharged by local precipitation via overland flow and unsaturated soil water infiltration.Unsaturated soil water was sourced from both precipitation and groundwater with variations at different depths.The upper soil layer at 0–15 cm was mainly sourced from limited precipitation,while the groundwater could move up to a 25 cm layer during the dry period.The unsaturated soil water content increased with soil depth in the top 40 cm,decreased at depths of 40 to 80 cm,and increased again at depths of 80 to 100 cm.The HYDRUS-1D model could simulate the unsaturated soil water dynamics well in the upper(0–40 cm)and lower(80–100 cm)sections,but poorly for depths of 40–80 cm due to the upward and downward flow.The bidirectional unsaturated soil water movement highlights the importance of capillary groundwater for wetland plants with similar climatic or hydrogeological conditions. 展开更多
关键词 water stable isotopes Unsaturated soil water sourcing HYDRUS-1D Degraded wetland restoration Songnen Plain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部