The wetting phenomenon of water droplets coexisting with the ordered water monolayer termed an unexpected phenomenon of“water that does not wet a water monolayer”at room temperature has been found on several solid s...The wetting phenomenon of water droplets coexisting with the ordered water monolayer termed an unexpected phenomenon of“water that does not wet a water monolayer”at room temperature has been found on several solid surfaces.Although the hydrogen bond saturation inside the monolayer can qualitatively describe this phenomenon,whether the Young-Dupre equation still holds under this unconventional wetting framework is still not answered.In this work,we have´calculated the contact angle values of the droplets as well as the work of adhesion between the droplets and the monolayer based on an extended phantom-wall method.The results show that similar to the conventional solid-liquid interface,classical Young-Dupre equation is also applicable for the interface of liquid water and ordered water monolayer.展开更多
The role of communication is very important in the process of flood prevention work.Modern communication technology can transmit information effectively and implement the communication target of dispatching instructio...The role of communication is very important in the process of flood prevention work.Modern communication technology can transmit information effectively and implement the communication target of dispatching instructions.Today,the communication technology covers various types such as mobile communication,satellite communication,short-wave communication,optical fiber communication and digital microwave communication.These modern communication technologies are widely used in transmission of information during the process of domestic flood prevention and water conditions.This article focuses on the research of using modern communication technology as the main objective and its specific application in water conservancy work.展开更多
Scientific workflows have gained the emerging attention in sophisti-cated large-scale scientific problem-solving environments.The pay-per-use model of cloud,its scalability and dynamic deployment enables it suited for ex...Scientific workflows have gained the emerging attention in sophisti-cated large-scale scientific problem-solving environments.The pay-per-use model of cloud,its scalability and dynamic deployment enables it suited for executing scientific workflow applications.Since the cloud is not a utopian environment,failures are inevitable that may result in experiencingfluctuations in the delivered performance.Though a single task failure occurs in workflow based applications,due to its task dependency nature,the reliability of the overall system will be affected drastically.Hence rather than reactive fault-tolerant approaches,proactive measures are vital in scientific workflows.This work puts forth an attempt to con-centrate on the exploration issue of structuring a nature inspired metaheuristics-Intelligent Water Drops Algorithm(IWDA)combined with an efficient machine learning approach-Support Vector Regression(SVR)for task failure prognostica-tion which facilitates proactive fault-tolerance in the scheduling of scientific workflow applications.The failure prediction models in this study have been implemented through SVR-based machine learning approaches and the precision accuracy of prediction is optimized by IWDA and several performance metrics were evaluated on various benchmark workflows.The experimental results prove that the proposed proactive fault-tolerant approach performs better compared with the other existing techniques.展开更多
The paper analyzes the practical use of management mode of small-scale farmland irrigation works in China,and studies various problems existing in the present management mode.It puts forward a mode named Water-consume...The paper analyzes the practical use of management mode of small-scale farmland irrigation works in China,and studies various problems existing in the present management mode.It puts forward a mode named Water-consumer Association which is the most practical one at present.It points out some rules which must be mastered in solving problems appearing in using this mode.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12022508 and 12074394)Sichuan Science and Technology Program(Grant No.2017YJ0174).
文摘The wetting phenomenon of water droplets coexisting with the ordered water monolayer termed an unexpected phenomenon of“water that does not wet a water monolayer”at room temperature has been found on several solid surfaces.Although the hydrogen bond saturation inside the monolayer can qualitatively describe this phenomenon,whether the Young-Dupre equation still holds under this unconventional wetting framework is still not answered.In this work,we have´calculated the contact angle values of the droplets as well as the work of adhesion between the droplets and the monolayer based on an extended phantom-wall method.The results show that similar to the conventional solid-liquid interface,classical Young-Dupre equation is also applicable for the interface of liquid water and ordered water monolayer.
文摘The role of communication is very important in the process of flood prevention work.Modern communication technology can transmit information effectively and implement the communication target of dispatching instructions.Today,the communication technology covers various types such as mobile communication,satellite communication,short-wave communication,optical fiber communication and digital microwave communication.These modern communication technologies are widely used in transmission of information during the process of domestic flood prevention and water conditions.This article focuses on the research of using modern communication technology as the main objective and its specific application in water conservancy work.
文摘Scientific workflows have gained the emerging attention in sophisti-cated large-scale scientific problem-solving environments.The pay-per-use model of cloud,its scalability and dynamic deployment enables it suited for executing scientific workflow applications.Since the cloud is not a utopian environment,failures are inevitable that may result in experiencingfluctuations in the delivered performance.Though a single task failure occurs in workflow based applications,due to its task dependency nature,the reliability of the overall system will be affected drastically.Hence rather than reactive fault-tolerant approaches,proactive measures are vital in scientific workflows.This work puts forth an attempt to con-centrate on the exploration issue of structuring a nature inspired metaheuristics-Intelligent Water Drops Algorithm(IWDA)combined with an efficient machine learning approach-Support Vector Regression(SVR)for task failure prognostica-tion which facilitates proactive fault-tolerance in the scheduling of scientific workflow applications.The failure prediction models in this study have been implemented through SVR-based machine learning approaches and the precision accuracy of prediction is optimized by IWDA and several performance metrics were evaluated on various benchmark workflows.The experimental results prove that the proposed proactive fault-tolerant approach performs better compared with the other existing techniques.
基金Supported by Provincial Water Conservancy Research and Technology Promotion Project:Research on Key Technical Problems of Farmland Water Conservancy Projects in Shandong Province(SDSLKY201401)
文摘The paper analyzes the practical use of management mode of small-scale farmland irrigation works in China,and studies various problems existing in the present management mode.It puts forward a mode named Water-consumer Association which is the most practical one at present.It points out some rules which must be mastered in solving problems appearing in using this mode.