期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Lowered water table causes species substitution while nitrogen amendment causes species loss in alpine wetland microbial communities
1
作者 Yuntao LI Jin-Sheng HE +3 位作者 Hao WANG Jizhong ZHOU Yunfeng YANG Haiyan CHU 《Pedosphere》 SCIE CAS CSCD 2021年第6期912-922,共11页
Alpine wetlands are hotspots of carbon(C)storage and methane emission,and they could be key contributors to global warming.In recent years,rapid warming has lowered the water table in alpine wetlands on the Tibetan Pl... Alpine wetlands are hotspots of carbon(C)storage and methane emission,and they could be key contributors to global warming.In recent years,rapid warming has lowered the water table in alpine wetlands on the Tibetan Plateau,concurrent with intensified nitrogen(N)deposition via anthropogenic activities.We carried out a field experiment to investigate the ecological impacts of these two factors on soil bacterial and functional communities,which are essential drivers of greenhouse gas emissions.Nitrogen amendment alone decreased the phylogenetic alpha-diversity of bacterial communities which could be offset by lowered water table.In contrast,microbial functional alpha-diversity,revealed by a high-throughput microarray,remained unchanged.Both bacterial and functional beta-diversity responded to lowered water table,but only bacterial community responded to N amendment.The alpha-Proteobacteria,beta-Proteobacteria,and Bacteroidetes were the major responsive bacterial lineages,and C degradation,methanogenesis,alkaline shock,and phosphorus oxidation were the major responsive functional processes.Partitioning analysis revealed that N amendment changed bacterial community structure mainly via species loss processes but did not affect bacterial functional communities,with soil pH and ammonium as the key factors influencing changes in bacterial community structure.Conversely,lowered water table altered bacterial and functional communities through species substitution processes linked to soil pH and soil moisture.According to our results,the response mechanisms of microbial communities to lowered water table and N amendment are fundamentally different in alpine wetlands. 展开更多
关键词 ALPHA-DIVERSITY bacterial community BETA-DIVERSITY microbial functional community N amendment water table lowering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部