Based on the investigation data of PHC content in Jiaozhou Bay,China during 1980-1981,the vertical distribution of PHC content in the water of Jiaozhou Bay was analyzed.The results showed that from 1980 to 1981,the ve...Based on the investigation data of PHC content in Jiaozhou Bay,China during 1980-1981,the vertical distribution of PHC content in the water of Jiaozhou Bay was analyzed.The results showed that from 1980 to 1981,the vertical distribution of PHC content in the water of Jiaozhou Bay depended on the water transfer process of PHC.During the water transfer process of PHC,PHC was input from pollution sources into the surface water of the bay firstly,and then it settled to the bottom.The horizontal distribution trends of PHC content in the surface and bottom water,the changes of PHC content in the surface and bottom water,and the vertical changes of PHC content showed that the settlement of PHC was fast and was consistent with PHC content.PHC accumulated at the bottom after continuous settlement of PHC,which revealed the water transfer process of PHC in Jiaozhou Bay.展开更多
Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes ha...Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes have been studied by many researchers, but all the studies are so far on the water transfer characteristics outside porous media and the water transfer characteristics inside porous media have been little known. In this study, in order to study the water transfer characteristics inside porous media during methane hydrate formation and dissociation processes, a novel apparatus with three pF-meter sensors which can detect water content changes inside porous media was applied. It was experimentally observed that methane hydrate formation processes were accompanied by water transfer from bottom to top inside porous media, however, the water behavior during hydrate dissociation processes was abnormal, for which more studies are needed to find out the real reason in our future work.展开更多
In order to study water transfer characteristics inside non-saturated media during methane hydrate formation and dissociation processes,water changes on the top,middle and bottom locations of experimental media during...In order to study water transfer characteristics inside non-saturated media during methane hydrate formation and dissociation processes,water changes on the top,middle and bottom locations of experimental media during the reaction processes were continuously followed with a novel apparatus with three pF-meter sensors.Coarse sand,fine sand and loess were chosen as experimental media.It was experimentally observed that methane hydrate was easier formed inside coarse sand and fine sand than inside loess.Methane hydrate formation configuration and water transfer characteristics during methane hydrate formation processes were very different among the different non-saturated media,which were important for understanding methane hydrate formation and dissociation mechanism inside sediments in nature.展开更多
The processes of heat and humidity transfer between air and water are what to be studied mainly in the paper, we put forward some main factors which influence the processes of heat and humidity transfer in the air was...The processes of heat and humidity transfer between air and water are what to be studied mainly in the paper, we put forward some main factors which influence the processes of heat and humidity transfer in the air washer. We come to the conclusion that we can change these main factors to achieve different heat and humidity transfer processes and decide processes of heat and humidity transfer of air and water with the initial temperature of spraying water in the air washer. All these results can make things convenient for the air conditioning management.展开更多
Water is a necessary element during gas hydrate formations. Therefore, by analyzing water depletion changes in media, the reaction characteristics of methane hydrate in media can be studied. In this study, two water s...Water is a necessary element during gas hydrate formations. Therefore, by analyzing water depletion changes in media, the reaction characteristics of methane hydrate in media can be studied. In this study, two water sources supplying some liquid water which may be consumed by the methane hydrate formation reactions were designed and assembled. Using them, the full formation processes of methane hydrate was studied. Experimental results show the following: If heat released from nucleation reaction of methane hydrate is diffused rapidly, the nucleation ratios will be enhanced discernibly. While the hydrate is formed, a force is generated that sucks fresh water from the source into the vicinity of the hydrate, slowing down the cementation process and causing some hydrate grain dissociation. As a result of cementation differences, the hydrate reaction processes with different water sources present linear or quadratic equation characteristics. After a few repeated dissociation and formation processes of some hydrate grains caused by the fresh water, the gas amounts contained in hydrate will be significantly enhanced.展开更多
基金Supported by the Doctoral Degree Construction Library of Guizhou Minzu UniversitySupporting Plan Project for New Century Excellent Talents by Ministry of Education(NCET-12-0659)+5 种基金National Natural Science Foundation of China(31560107)Major Project of Science and Technology of Guizhou Province([2004]6007-01)Guizhou R&D Program for Social Development([2014]3036)Scientific Research Project for Introduction of Talents of Guizhou Minzu University([2014]02)Natural Scientific Research Project of Education Department of Guizhou Province,China(KY[2014]266)Joint Foundation of Science and Technology Department of Guizhou Province,China(LH[2014]7376)
文摘Based on the investigation data of PHC content in Jiaozhou Bay,China during 1980-1981,the vertical distribution of PHC content in the water of Jiaozhou Bay was analyzed.The results showed that from 1980 to 1981,the vertical distribution of PHC content in the water of Jiaozhou Bay depended on the water transfer process of PHC.During the water transfer process of PHC,PHC was input from pollution sources into the surface water of the bay firstly,and then it settled to the bottom.The horizontal distribution trends of PHC content in the surface and bottom water,the changes of PHC content in the surface and bottom water,and the vertical changes of PHC content showed that the settlement of PHC was fast and was consistent with PHC content.PHC accumulated at the bottom after continuous settlement of PHC,which revealed the water transfer process of PHC in Jiaozhou Bay.
基金financially supported by the CAS Knowledge Innovation Key Project (Grant No. KZCX2-YW- 330)the National Science Fund FosteringTalents in Basic Research to Glaciology and Geocryology (Grant No. J0630966)
文摘Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes have been studied by many researchers, but all the studies are so far on the water transfer characteristics outside porous media and the water transfer characteristics inside porous media have been little known. In this study, in order to study the water transfer characteristics inside porous media during methane hydrate formation and dissociation processes, a novel apparatus with three pF-meter sensors which can detect water content changes inside porous media was applied. It was experimentally observed that methane hydrate formation processes were accompanied by water transfer from bottom to top inside porous media, however, the water behavior during hydrate dissociation processes was abnormal, for which more studies are needed to find out the real reason in our future work.
基金supported by the CAS Knowledge Innovation Key Project (Grant No.KZCX2-YW-330)the National Science Fund Fostering Talents in Basic Research to Glaciology and Geocryology (Grant No.J0630966)
文摘In order to study water transfer characteristics inside non-saturated media during methane hydrate formation and dissociation processes,water changes on the top,middle and bottom locations of experimental media during the reaction processes were continuously followed with a novel apparatus with three pF-meter sensors.Coarse sand,fine sand and loess were chosen as experimental media.It was experimentally observed that methane hydrate was easier formed inside coarse sand and fine sand than inside loess.Methane hydrate formation configuration and water transfer characteristics during methane hydrate formation processes were very different among the different non-saturated media,which were important for understanding methane hydrate formation and dissociation mechanism inside sediments in nature.
文摘The processes of heat and humidity transfer between air and water are what to be studied mainly in the paper, we put forward some main factors which influence the processes of heat and humidity transfer in the air washer. We come to the conclusion that we can change these main factors to achieve different heat and humidity transfer processes and decide processes of heat and humidity transfer of air and water with the initial temperature of spraying water in the air washer. All these results can make things convenient for the air conditioning management.
基金the financial support from the Youth Science Foundation (Grant No. 41101070)the CAS West Action Plan (Grant No. KZCX2-XB3-03)
文摘Water is a necessary element during gas hydrate formations. Therefore, by analyzing water depletion changes in media, the reaction characteristics of methane hydrate in media can be studied. In this study, two water sources supplying some liquid water which may be consumed by the methane hydrate formation reactions were designed and assembled. Using them, the full formation processes of methane hydrate was studied. Experimental results show the following: If heat released from nucleation reaction of methane hydrate is diffused rapidly, the nucleation ratios will be enhanced discernibly. While the hydrate is formed, a force is generated that sucks fresh water from the source into the vicinity of the hydrate, slowing down the cementation process and causing some hydrate grain dissociation. As a result of cementation differences, the hydrate reaction processes with different water sources present linear or quadratic equation characteristics. After a few repeated dissociation and formation processes of some hydrate grains caused by the fresh water, the gas amounts contained in hydrate will be significantly enhanced.