The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distributi...The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distribution of water resources is severely unbalanced.Therefore,the detailed analysis of spatio-temporal water mass changes is helpful to the development and rational utilization of water resources in the YRB.In this study,the variation of terrestrial water storage(TWS)is monitored by Gravity Recovery and Climate Experiment(GRACE)satellite gravity.We find that the University of Texas Center for Space Research(CSR)solution shows a notable difference with the Jet Propulsion Laboratory(JPL)in space,but the general trend is consistent in time series.Then the GRACE inferred water mass variation reveals that the YRB has experienced several drought and flood events over the past two decades.Global Land Data Assimilation System(GLDAS)results are similar to GRACE.Furthermore,the overall precipitation trend tends to be stable in space,but it is greatly influenced by the strong El Nino-~Southern Oscillation(ENSO),which is the response to global climate change.The upper YRB is less affected by ENSO and shows a more stable water storage signal with respect to the lower YRB.展开更多
The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE an...The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE and promote local economic growth and conservation of water.This study uses 19 provinces and regions along the Yangtze River’s mainstream from 2009 to 2019 as its research objects and uses a Vector Auto Regression(VAR)model to quantitatively evaluate the spatiotemporal evolution of the coupling coordination degree(CCD)between the two subsystems of WUE and STI.The findings show that:(1)Both the WUE and STI in the Yangtze River Basin showed an upward trend during the study period,but the STI effectively lagged behind the WUE;(2)The CCD of the two subsystems generally showed an upward trend,and the CCD of each province was improved to varying degrees,but the majority of regions did not develop a high-quality coordination stage;(3)The CCD of the two systems displayed apparent positive spatial autocorrelation in the spatial correlation pattern,and there were only two types:high-high(H-H)urbanization areas and low-low(L-L)urbanization areas;(4)The STI showed no obvious response to the impact of the WUE,while the WUE responded greatly to the STI,and both of them were highly dependent on themselves.Optimizing their interaction mechanisms should be the primary focus of high-quality development in the basin of the Yangtze River in the future.These results give the government an empirical basis to enhance the WUE and promote regional sustainable development.展开更多
Suspended sediment concentrations in the Middle Yangtze River(MYR)reduced greatly after the Three Gorges Project operation,causing the composition of bed material to coarsen continuously.However,little is known about ...Suspended sediment concentrations in the Middle Yangtze River(MYR)reduced greatly after the Three Gorges Project operation,causing the composition of bed material to coarsen continuously.However,little is known about the non-equilibrium transport of graded suspended sediment owing to different bed material compositions(BMCs)along the MYR,and it is necessary to determine the magnitude of recovery factor.Using the Markov stochastic process in conjunction with the hiding-exposure effect of non-uniform bed-material,a new formula is proposed for calculating the recovery factor including the effect of different BMCs,and it is incorporated into the non-equilibrium transport equation to simulate the recovery processes of suspended load in both sand-gravel bed and sand bed reaches of the MYR.The results show that:(i)the recovery rate of graded sediment concentrations at Zhicheng was slower than that at Shashi during the period 2003-2007;(ii)the mean recovery factors of the coarse,medium,and fine sediment fractions in the ZhichengShashi reach were 0.152,0.0012,and 0.0005,respectively,and the coarse sediment recovered up to the maximum sediment concentration of 0.138 kg/m3over a distance of 15 km;and(iii)the results of the new formula that can consider the effect of bed material composition are in general agreement with the field observations,and the spatial and temporal delay effects are inversely related to particle size and BMC.Consequently,the BMC effect on the nonequilibrium sediment transport in different reaches of the MYR needs to be considered for higher simulation accuracy.展开更多
Froude similitude and friction similitude are the two crucial similarity conditions that are often used in physical-scale modeling of rivers.However,models often deviate from Froude similitude when dealing with real-w...Froude similitude and friction similitude are the two crucial similarity conditions that are often used in physical-scale modeling of rivers.However,models often deviate from Froude similitude when dealing with real-world situations.This study developed several fixed-bed river models with various curvatures to determine the effect of Froude similitude deviation on curved channel modeling.Models were constructed according to the characteristics of the Middle Yangtze River.Differences in longitudinal slope,transverse slope,and main stream line location were measured by varying Froude similitude deviation.The deviations of longitudinal slope and velocity were negligible because friction similitude was accounted for.The transverse slope varied significantly with the Froude similitude deviation,and the main stream line varied with the curvature and Froude similitude deviation.Formulae were derived to estimate the slope deviation.These analyses helped to clarify the feasibility of the method of Froude similitude deviation for curved channels.展开更多
The chemical and isotopic characteristics of the water and suspended particulate materials(SPM) in the Yangtze River were investigated on the samples collected from 25 hydrological monitoring stations in the mainste...The chemical and isotopic characteristics of the water and suspended particulate materials(SPM) in the Yangtze River were investigated on the samples collected from 25 hydrological monitoring stations in the mainsteam and 13 hydrological monitoring stations in the major tributaries during 2003 to 2007. The water samples show a large variation in both δD( 30‰ to 112‰) and δ18O( 3.8‰ to 15.4‰) values. Both δD and δ18O values show a decrease from the river head to the Jinsha Jiang section and then increase downstream to the river mouth. It is found that the oxygen and hydrogen isotopic compositions of the Yangtze water are controlled by meteoric precipitation, evaporation, ice(and snow) melting and dam building. The Yangtze SPM concentrations show a large variation and are well corresponded to the spatial and temporal changes of flow speed, runoff and SPM supply, which are affected by the slope of the river bed, local precipitation rate, weathering intensity, erosion condition and anthropogenic activity. The Yangtze SPM consists of clay minerals, clastic silicate and carbonate minerals, heavy minerals, iron hydroxide and organic compounds. From the upper to lower reaches, the clay and clastic silicate components in SPM increase gradually, but the carbonate components decrease gradually, which may reflect changes of climate and weathering intensity in the drainage area. Compared to those of the upper crust rocks, the Yangtze SPM has lower contents of SiO2, CaO, K2 O and Na2 O and higher contents of TFe2 O3 and trace metals of Co, Ni, Cu, Zn, Pb and Cd. The ΣREE in the Yangtze SPM is also slightly higher than that of the upper crust. From the upper to lower reaches, the CaO and MgO contents in SPM decrease gradually, but the SiO2 content increases gradually, corresponding to the increase of clay minerals and decrease of the carbonates. The δ30SiSPM values( 1.1‰ to 0.3‰) of the Yangtze SPM are similar to those of the average shale, but lower than those of the granite rocks( 0.3‰ to 0.3‰), reflecting the effect of silicon isotope fractionation in silicate weathering process. The δ30SiSPM values of the Yangtze SPM show a decreasing trend from the upper to the middle and lower reaches, responding to the variation of the clay content. The major anions of the river water are HCO 3, SO 4 2, Cl, NO 3, SiO 4 4 and F and the major cations include Ca2+, Na+, Mg2+, K+ and Sr2+. The good correlation between HCO3-content and the content of Ca2+may suggest that carbonate dissolution is the dominate contributor to the total dissolved solid(TDS) of the Yangtze River. Very good correlations are also found among contents of Cl, SO4 2, Na+, Mg2+, K+and Sr2+, indicating the important contribution of evaporite dissolution to the TDS of the Yangtze River. High TDS contents are generally found in the head water, reflecting a strong effect of evaporation in the Qinghai-Tibet Plateau. A small increase of the TDS is generally observed in the river mouth, indicating the influence of tidal intrusion. The F and NO3 contents show a clear increase trend from the upstream to downstream, reflecting the contribution of pesticides and fertilizers in the Chuan Jiang section and the middle and lower reaches. The DSi shows a decrease trend from the upstream to downstream, reflecting the effect of rice and grass growth along the Chuan Jiang section and the middle and lower reaches. The dissolved Cu, Zn and Cd in the Yangtze water are all higher than those in world large rivers, reflecting the effect of intensive mining activity along the Yangtze drainage area. The Yangtze water generally shows similar REE distribution pattern to the global shale. The δ30SiDiss values of the dissolved silicon vary from 0.5‰ to 3.7‰, which is the highest among those of the rivers studied. The δ30SiDiss values of the water in the Yangtze mainsteam show an increase trend from the upper stream to downstream. Its DSi and δ30SiDiss are influenced by multiple processes, such as weathering process, phytolith growth in plants, evaporation, phytolith dissolution, growth of fresh water diatom, adsorption and desorption of aqueous monosilicic acid on iron oxide, precipitation of silcretes and formation of clays coatings in aquifers, and human activity. The δ34SSO4 values of the Yangtze water range from 1.7‰ to 9.0‰. The SO4 in the Yangtze water are mainly from the SO4 in meteoric water, the dissolved sulfate from evaporite, and oxidation of sulfide in rocks, coal and ore deposits. The sulfate reduction and precipitation process can also affect the sulfur isotope composition of the Yangtze water. The87Sr/86Sr ratios of the Yangtze water range from 0.70823 to 0.71590, with an average value of 0.71084. The87Sr/86Sr ratio and Sr concentration are primary controlled by mixing of various sources with different87Sr/86Sr ratios and Sr contents, including the limestone, evaporite and the silicate rocks. The atmospheric precipitation and anthropogenic inputs can also contribute some Sr to the river. The δ11B values of the dissolved B in the Yangtze water range from 2.0‰ to 18.3‰, which is affected by multifactors, such as silicate weathering, carbonate weathering, evaporite dissolution, atmospheric deposition, and anthropogenic inputs.展开更多
As one of the fastest developing regions in China, the middle-lower Yangtze River (MLYR) is vulnerable to floods and droughts. With obtained time series of annual highest water level (HWL), annual lowest water lev...As one of the fastest developing regions in China, the middle-lower Yangtze River (MLYR) is vulnerable to floods and droughts. With obtained time series of annual highest water level (HWL), annual lowest water level (LWL) and the corresponding fiver discharges from three gauging stations in MLYR that covering the period 1987-2011, the current study evaluated the change character- istics of annual extreme water levels and the correlation with fiver discharges by using the methods of Vend test, Mann-Whitney-Pettitt (MWP) test and double mass analysis. Major result indicated a decreasing/increasing trend for annual HWL/LWL of all stations in MLYR during the study period. A change point in 1999 was identified for annual HWL at the Hankou and Datong stations. The year 2006 was found to be the critical year that the relationship between annual extreme water levels and fiver discharges changed in the MLYR. With contrast to annual LWL in MLYR, further investigation revealed that the change characteristics of annual HWL were highly consistent with regional precipitation in the Yangtze River Basin, while the linkage with Three Gorges Dam (TGD) operation is not strong. Our observation also pointed out that the effect of serious down cutting of the riverbed and the enlargement of the cross-section area during the initial period of TGD operation caused the downward trend of the relationship between annual LWL and river discharge. Whereas, the relatively raised river water level before the flood season due to TGD regulation since 2006 explained for the changing upward trend of the relationship between annual HWL and river discharge.展开更多
Since 2002, an artificial water and sediment regulation(AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the ...Since 2002, an artificial water and sediment regulation(AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the Yellow River Mouth(YRM) has been observed and modeled intensively since AWSR, but preferentially for the non-storm conditions. In this study, a three-dimensional current-wave-sediment coupled model, DHI-MIKE numerical model, was used to examine the seasonal suspended-sediment transport in the YRM after the AWSR. Results show that the seasonal distribution of suspended-sediments in the YRM is dominated by wind and wave rather than river input. The major transport pathway of suspended-sediments is from the western Laizhou Bay to the Bohai Strait during the winter monsoon, especially in storm events. In addition, about 66% of the river sediments deposit within 30 km of the YRM, which is smaller than previous estimations. It suggests that the YRM has been eroded in recent decades.展开更多
Surface sediments from the Changjiang River (Yangtze River) Estuary, Hangzhou Bay, and their adjacent waters were analyzed for their grain size distribution, organic carbon (OC) concentration, and stable carbon is...Surface sediments from the Changjiang River (Yangtze River) Estuary, Hangzhou Bay, and their adjacent waters were analyzed for their grain size distribution, organic carbon (OC) concentration, and stable carbon isotope composition (δ13C). Based on this analysis, about 36 surface sediment samples were selected from various environments and separated into sand (〉0.250 ram, 0.125-0.250 ram, 0.063-0.125 mm) and silt (0.025-0.063 mm) fractions by wet-sieving fractionation methods, and further into silt- (0.004-0.025 mm) and clay-sized (〈0.004 mm) fractions by centrifugal fractionation. Sediments of six grain size categories were analyzed for their OC and 613C contents to explore the grain size composition and transport paths of sedimentary OC in the study area. From fine to coarse fractions, the OC content was 1.18%, 0.51%, 0.46%, 0.42%, 0.99%, and 0.48%, respectively, while the δ13C was -21.64‰, -22.03‰, -22.52‰, -22.46‰, -22.36‰, and -22.28%0, respectively. In each size category, the OC contribution was 42.96%, 26.06%, 9.82%, 5.75%, 7.09%, and 8.33%, respectively. The OC content in clay and fine silt fractions (〈0.025 ram) was about 69.02%. High OC concentrations were mainly found in offshore modern sediments in the northeast of the Changjiang River Estuary, in modern sediments in the lower estuary of the Changjiang River and Hangzhou Bay, and in Cyclonic Eddy modern sediments to the southwest of the Cheju Island. Integrating the distribution of terrestrial OC content of each grain size category with the δ13C of the bulk sediment indicated that the terrestrial organic material in the Changjiang River Estuary was transported seaward and dispersed to the Cyclonic Eddy modern sediments to the southwest of the Cheju Island via two pathways: one was a result of the Changjiang River Diluted Water (CDW) northeastward extending branch driven by the North Jiangsu Coastal Current and the Yellow Sea Coastal Current, while the other one was the result of the CDW southward extending branch driven by the Taiwan Warm Current.展开更多
An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) mod...An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.展开更多
The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze R...The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze River's total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region's vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region's glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961–2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June–August;the close correlation between June–August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961–2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.The annual glacial meltwater runoff in the Yangtze River Source Region is projected to increase by 28.5 percent by 2050 over its 1970 value with the projected temperature increase of 2℃ and a precipitation increase of 29 mm.As a critical source of surface water for agriculture on the eastern Qinghai-Tibet Plateau and beyond,the mass retreat of glaciers in the Yangtze River Source Region will have enormous negative impacts on farming and livestock-raising ac-tivities in upper Yangtze River watershed,as well as on the viability of present ecosystems and even socioeconomic development in the upper Yangtze River Basin.展开更多
Water function classification is to divide the waters in a basin or a region into different water function regions according to the natural features such as water resources condition, physical geographical location, e...Water function classification is to divide the waters in a basin or a region into different water function regions according to the natural features such as water resources condition, physical geographical location, environmental condition, etc. and social features such as the status quo of development and utilization, the requirement of social and economic development on water quantity and quality etc. Water function division has not ever been carried out in China and no ready-made theory and method can be complied with, in the meantime, it is a fundamental work with strong practical function. Therefore, the basic concept and theory foundation and research method are put forward on the base of summary of water resources management and developed and will be perfected in practice process of water function division. The Yangtze function zone covers the Yangtze river basin, the Lancang river basin and the rivers in the western area of the Lancang river in Southwest China. According to the technical outline of national water function division and combined with division practice of the Yangtze function zone, this paper presents the scope determination, procedure and method of water function division.展开更多
In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations ...In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations of terrestrial water storage (TWS) for two periods, 1982-2005 (baseline) and 2071-2100, under future climate scenarios A2 and B2 in the Yangtze River basin. The results show that the estimated TWS during the baseline period and under the two future climate scenarios have similar seasonal amplitudes of 60-70 mm. The higher values of TWS appear in June during the baseline period and under the B2 scenario, whereas the TWS under A2 shows two peaks in response to the related precipitation pattern. It also shows that the TWS is recharged from February to June during the baseline period, but it is replenished from March to June under the A2 and B2 scenarios. An analysis of the standard derivation of seasonal and interannual TWS time series under the three scenarios demonstrates that the seasonal TWS of the southeastern part of the Yangtze River basin varies remarkably and that the southeastern and central parts of the basin have higher variations in interannual TWS. With respect to the first mode of the Empirical Orthogonal Function (EOF), the inverse-phase change in seasonal TWS mainly appears across the Guizhou-Sichuan-Shaanxi belt, and the entire basin generally represents a synchronous change in interannual TWS. As a whole, the TWS under A2 presents a larger seasonal variation whereas that under B2 displays a greater interannual variation. These results imply that climate change could trigger severe disasters in the southeastern and central parts of the basin.展开更多
The occurrence of the red tide is an extremely complex process, which is considered as the comprehensive result of various factors. The Yangtze River estuary water area is always in high incidence area of red tide. In...The occurrence of the red tide is an extremely complex process, which is considered as the comprehensive result of various factors. The Yangtze River estuary water area is always in high incidence area of red tide. In this paper, according to the events of red tide and meteorologic and hydrologic data in Yangtze River estuary water area from 2000 to 2010, by using mathematical statistics methods, we analyze the relevance between the occurrence of the red tide and the synoptic situation field, and probe into the regular patterns.展开更多
The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration ...The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration of water quality of the Yangtze, bringing about many bad effects on people’s life and production. Through a comprehensive analysis of water quality of the Yangtze River through Jiangsu Province, we investigated the reasons for the deterioration of its water quality, and explored countermeasure to maintain good water quality in the Yangtze with the objective to provide safe and reliable drinking water sources for people.展开更多
We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and th...We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and their interactions on WDR using the improved version of three-dimensional numerical model ECOM. Using data for annual mean wind speed and river discharge during January, we determined that the flood, ebb, net WDR values in the North Branch of the estuary were 3.48%, 1.68%,-4.06% during spring tide, and 4.82%, 2.34%,-2.79% during neap tide, respectively. Negative net WDR values denote the transport of water from the North Branch into the South Branch. Using the same data, the corresponding ratios were 50.09%, 50.92%, 54.97%, and 52.33%, 50.15%, 43.86% in the North Channel and 38.56%, 44.78%, 103.96%, and 36.92%, 43.17%, 60.97% in the North Passage, respectively. When northerly wind speed increased, landward Ekman transport was enhanced in the North Branch, increasing the flood WDR, while the ebb WDR declined and the net WDR exhibited a significant decrease. Similarly, in the North Channel, the flood WDR is increased, the ebb WDR reduced, and the net WDR showed a marked decrease. In the North Passage, the flood WDR also increased while the ebb and net WDR declined. As the river discharge increased, the flood and ebb WDR of the North Branch increased slightly and the net WDR increased markedly. In the North Channel the flood and ebb WDR changed very slightly, while the net WDR declined during spring tides and increased during neap tides. The WDR in the North Passage changed slightly during flood and ebb tides while the net WDR showed a marked increase. The WDR values of different bifurcations and the responses to northerly wind, river discharge, and tide are discussed in comparison with variations in river topography, horizontal wind-induced circulation, and tidal-induced residual current.展开更多
The Sanxia Reservoir on the Changjiang River stored water from 1 to 10 June and from 25 October to 5 November in 2003, elevating the water level to 135 and 139 m above mean sea level at the dam, respectively. A monthl...The Sanxia Reservoir on the Changjiang River stored water from 1 to 10 June and from 25 October to 5 November in 2003, elevating the water level to 135 and 139 m above mean sea level at the dam, respectively. A monthly dataset of water discharge, suspended sediment concentration (SSC) and sediment load of the Changjiang River from 1953 to 2003 measured at the Datong Hydrological Gauging Station of the downstreammost Changjiang River was mainly used to examine the Changjiang River sediment delivering into the sea in 2003 in response to the Sanxia Reservoir water storages in the same year. The results show that (1) compared with those in 2002, 2001, and the multi-yearly (1953-2000) average, both annual SSC and sediment load at Datong in 2003 were markedly reduced, and they were even smaller than the multi-yearly (1953-2000) minimum, although the annual runoff in 2003 did not change largely; and (2) compared with those in the corresponding months in 2002, 2001 and the multi-monthly average from 1953 to 2000, monthly SSC and sediment load at Datong both in June and November of 2003 were also markedly reduced, and those in June 2003 were even smaller than the multi-monthly minimum from 1953 to 2000. These may indicate that sediment sedimentation in the Sanxia Reservoir resulting from the Sanxia Reservoir water storage should be the main cause of the decreased annual and monthly SSC and sediment load of the Changjiang River into the sea in 2003. Besides, it seems that the Sanxia Reservoir water storage in the early June (flood season) of 2003 had more impacts on the decreased monthly SSC into the sea than that in the late October and early November (approximately non-flood season) of 2003.展开更多
The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of...The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and E1 Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.展开更多
Anomalous characteristics of the atmospheric water cycle structure are highly significant to the mechanisms of seasonal-scale meteorological droughts.They also play an important role in the identification of indicativ...Anomalous characteristics of the atmospheric water cycle structure are highly significant to the mechanisms of seasonal-scale meteorological droughts.They also play an important role in the identification of indicative predictors of droughts.To better understand the causes of seasonal meteorological droughts in the middle and lower reaches of the Yangtze River(MLRYR),characteristics of the atmospheric water cycle structure at different drought stages were determined using standardized anomalies.The results showed that the total column water vapor(TCWV)was anomalously low during drought occurrence periods.In contrast,there were no anomalous signals at the drought persistence and recovery stages in the MLRYR.Moreover,there was no significant temporal correlation between the TCWV anomaly and seasonal-scale drought index(the 3-month standardized precipitation index(SPI_(3))).During drought events,water vapor that mainly originated from the Bay of Bengal was transported southwest of the MLRYR.Meanwhile,the anomalous signal of water vapor transport was negative at the drought appearance stage.At the drought persistence stage,the negative anomalous signal was the most significant.Water vapor flux divergence in the MLRYR showed significant positive anomalous signals during drought events,and the signal intensity shifted from an increasing to a decreasing trend at different drought stages.In addition,a significant positive correlation existed between the anomaly of water vapor flux divergence and regional SPI_(3).Overall,water vapor flux divergence is more predictive of droughts in the MLRYR.展开更多
Water budget closure is a method used to study the balance of basin water storage and the dynamics of relevant hydrological components(e.g.,precipitation,evapotranspiration,and runoff).When water budget closure is con...Water budget closure is a method used to study the balance of basin water storage and the dynamics of relevant hydrological components(e.g.,precipitation,evapotranspiration,and runoff).When water budget closure is connected with terrestrial water storage change(TWSC)estimated from Gravity Recovery and Climate Experiment(GRACE)data,variations in basin runoff can be understood comprehensively.In this study,total runoff variations in the Yangtze River Basin(YRB)and its sub-basins are examined in detail based on the water budget closure equation.We compare and combine mainstream precipitation and evapotranspiration models to determine the best estimate of precipitation minus evapotranspiration.In addition,we consider human water consumption,which has been neglected in earlier studies,and discuss its impact.To evaluate the effectiveness and accuracy of the combined hydrological models in estimating subsurface runoff,we collect discharge variations derived from in situ observations in the YRB and its sub-basins and compare these data with the models’final estimated runoff variations.The estimated runoff variations suggest that runoff over the YRB has been increasing,especially in the lower sub-basins and in the post-monsoon season,and is accompanied by apparent terrestrial water loss.展开更多
基金funded by the Key Research Project of Higher Education Institutions in Henan Province (20B480004)the Scientific and Technological Project of Henan Province (222102320258)+2 种基金NSFCs (Grant Nos. 41904012 and 41974022)China Postdoctoral Science Foundation (2020T130482,2018M630879)the Fundamental Research Funds for Central Universities (2042020kf0008)
文摘The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distribution of water resources is severely unbalanced.Therefore,the detailed analysis of spatio-temporal water mass changes is helpful to the development and rational utilization of water resources in the YRB.In this study,the variation of terrestrial water storage(TWS)is monitored by Gravity Recovery and Climate Experiment(GRACE)satellite gravity.We find that the University of Texas Center for Space Research(CSR)solution shows a notable difference with the Jet Propulsion Laboratory(JPL)in space,but the general trend is consistent in time series.Then the GRACE inferred water mass variation reveals that the YRB has experienced several drought and flood events over the past two decades.Global Land Data Assimilation System(GLDAS)results are similar to GRACE.Furthermore,the overall precipitation trend tends to be stable in space,but it is greatly influenced by the strong El Nino-~Southern Oscillation(ENSO),which is the response to global climate change.The upper YRB is less affected by ENSO and shows a more stable water storage signal with respect to the lower YRB.
基金funded by the Humanities and Social Science Research Project of Chongqing Education Commission(23SKJD111)Science and Technology Research Project of Chongqing Education Commission(KJQN202101122 and KJQN201904002)+6 种基金Project of Chongqing Higher Education Association(CQGJ21B057)Chongqing Graduate Education Teaching Reform Research Project(yjg223121)Chongqing Higher Education Teaching Reform Research Project(233337)Higher Education Research Project,Chongqing University of Technology(2022ZD01)Annual project of the“14th Five-Year Plan”for National Business Education in 2022(SKKT-22015)Party Building and Ideological and Political Project,Chongqing University of Technology(2022DJ307)Chongqing University of Technology Undergraduate Education and Teaching Reform Research Project(2021YB21).
文摘The Yangtze River Basin’s water resource utilization efficiency(WUE)and scientific and technological innovation level(STI)are closely connected,and the comprehension of these relationships will help to improve WUE and promote local economic growth and conservation of water.This study uses 19 provinces and regions along the Yangtze River’s mainstream from 2009 to 2019 as its research objects and uses a Vector Auto Regression(VAR)model to quantitatively evaluate the spatiotemporal evolution of the coupling coordination degree(CCD)between the two subsystems of WUE and STI.The findings show that:(1)Both the WUE and STI in the Yangtze River Basin showed an upward trend during the study period,but the STI effectively lagged behind the WUE;(2)The CCD of the two subsystems generally showed an upward trend,and the CCD of each province was improved to varying degrees,but the majority of regions did not develop a high-quality coordination stage;(3)The CCD of the two systems displayed apparent positive spatial autocorrelation in the spatial correlation pattern,and there were only two types:high-high(H-H)urbanization areas and low-low(L-L)urbanization areas;(4)The STI showed no obvious response to the impact of the WUE,while the WUE responded greatly to the STI,and both of them were highly dependent on themselves.Optimizing their interaction mechanisms should be the primary focus of high-quality development in the basin of the Yangtze River in the future.These results give the government an empirical basis to enhance the WUE and promote regional sustainable development.
基金the National Natural Science Foundation of China(Grant Nos.51725902,52009095,U2040215,U2240206,and 52109098)supported partly by the Postdoctoral Research Foundation of China(Grant No.BX2021228)Natural Science Foundation of Hubei Province(Grant No.2021CFA029)。
文摘Suspended sediment concentrations in the Middle Yangtze River(MYR)reduced greatly after the Three Gorges Project operation,causing the composition of bed material to coarsen continuously.However,little is known about the non-equilibrium transport of graded suspended sediment owing to different bed material compositions(BMCs)along the MYR,and it is necessary to determine the magnitude of recovery factor.Using the Markov stochastic process in conjunction with the hiding-exposure effect of non-uniform bed-material,a new formula is proposed for calculating the recovery factor including the effect of different BMCs,and it is incorporated into the non-equilibrium transport equation to simulate the recovery processes of suspended load in both sand-gravel bed and sand bed reaches of the MYR.The results show that:(i)the recovery rate of graded sediment concentrations at Zhicheng was slower than that at Shashi during the period 2003-2007;(ii)the mean recovery factors of the coarse,medium,and fine sediment fractions in the ZhichengShashi reach were 0.152,0.0012,and 0.0005,respectively,and the coarse sediment recovered up to the maximum sediment concentration of 0.138 kg/m3over a distance of 15 km;and(iii)the results of the new formula that can consider the effect of bed material composition are in general agreement with the field observations,and the spatial and temporal delay effects are inversely related to particle size and BMC.Consequently,the BMC effect on the nonequilibrium sediment transport in different reaches of the MYR needs to be considered for higher simulation accuracy.
基金supported by the Project of Subsequent Work of the Three Gorges Project(Grant No.SXHXGZ-2020-3).
文摘Froude similitude and friction similitude are the two crucial similarity conditions that are often used in physical-scale modeling of rivers.However,models often deviate from Froude similitude when dealing with real-world situations.This study developed several fixed-bed river models with various curvatures to determine the effect of Froude similitude deviation on curved channel modeling.Models were constructed according to the characteristics of the Middle Yangtze River.Differences in longitudinal slope,transverse slope,and main stream line location were measured by varying Froude similitude deviation.The deviations of longitudinal slope and velocity were negligible because friction similitude was accounted for.The transverse slope varied significantly with the Froude similitude deviation,and the main stream line varied with the curvature and Froude similitude deviation.Formulae were derived to estimate the slope deviation.These analyses helped to clarify the feasibility of the method of Froude similitude deviation for curved channels.
基金supported by the National Natural Science Foundation of China (Item No. 40673005)the Ministry of Science and Technology (2004DIB3J081)the Geological Survey of China (200320130-006)
文摘The chemical and isotopic characteristics of the water and suspended particulate materials(SPM) in the Yangtze River were investigated on the samples collected from 25 hydrological monitoring stations in the mainsteam and 13 hydrological monitoring stations in the major tributaries during 2003 to 2007. The water samples show a large variation in both δD( 30‰ to 112‰) and δ18O( 3.8‰ to 15.4‰) values. Both δD and δ18O values show a decrease from the river head to the Jinsha Jiang section and then increase downstream to the river mouth. It is found that the oxygen and hydrogen isotopic compositions of the Yangtze water are controlled by meteoric precipitation, evaporation, ice(and snow) melting and dam building. The Yangtze SPM concentrations show a large variation and are well corresponded to the spatial and temporal changes of flow speed, runoff and SPM supply, which are affected by the slope of the river bed, local precipitation rate, weathering intensity, erosion condition and anthropogenic activity. The Yangtze SPM consists of clay minerals, clastic silicate and carbonate minerals, heavy minerals, iron hydroxide and organic compounds. From the upper to lower reaches, the clay and clastic silicate components in SPM increase gradually, but the carbonate components decrease gradually, which may reflect changes of climate and weathering intensity in the drainage area. Compared to those of the upper crust rocks, the Yangtze SPM has lower contents of SiO2, CaO, K2 O and Na2 O and higher contents of TFe2 O3 and trace metals of Co, Ni, Cu, Zn, Pb and Cd. The ΣREE in the Yangtze SPM is also slightly higher than that of the upper crust. From the upper to lower reaches, the CaO and MgO contents in SPM decrease gradually, but the SiO2 content increases gradually, corresponding to the increase of clay minerals and decrease of the carbonates. The δ30SiSPM values( 1.1‰ to 0.3‰) of the Yangtze SPM are similar to those of the average shale, but lower than those of the granite rocks( 0.3‰ to 0.3‰), reflecting the effect of silicon isotope fractionation in silicate weathering process. The δ30SiSPM values of the Yangtze SPM show a decreasing trend from the upper to the middle and lower reaches, responding to the variation of the clay content. The major anions of the river water are HCO 3, SO 4 2, Cl, NO 3, SiO 4 4 and F and the major cations include Ca2+, Na+, Mg2+, K+ and Sr2+. The good correlation between HCO3-content and the content of Ca2+may suggest that carbonate dissolution is the dominate contributor to the total dissolved solid(TDS) of the Yangtze River. Very good correlations are also found among contents of Cl, SO4 2, Na+, Mg2+, K+and Sr2+, indicating the important contribution of evaporite dissolution to the TDS of the Yangtze River. High TDS contents are generally found in the head water, reflecting a strong effect of evaporation in the Qinghai-Tibet Plateau. A small increase of the TDS is generally observed in the river mouth, indicating the influence of tidal intrusion. The F and NO3 contents show a clear increase trend from the upstream to downstream, reflecting the contribution of pesticides and fertilizers in the Chuan Jiang section and the middle and lower reaches. The DSi shows a decrease trend from the upstream to downstream, reflecting the effect of rice and grass growth along the Chuan Jiang section and the middle and lower reaches. The dissolved Cu, Zn and Cd in the Yangtze water are all higher than those in world large rivers, reflecting the effect of intensive mining activity along the Yangtze drainage area. The Yangtze water generally shows similar REE distribution pattern to the global shale. The δ30SiDiss values of the dissolved silicon vary from 0.5‰ to 3.7‰, which is the highest among those of the rivers studied. The δ30SiDiss values of the water in the Yangtze mainsteam show an increase trend from the upper stream to downstream. Its DSi and δ30SiDiss are influenced by multiple processes, such as weathering process, phytolith growth in plants, evaporation, phytolith dissolution, growth of fresh water diatom, adsorption and desorption of aqueous monosilicic acid on iron oxide, precipitation of silcretes and formation of clays coatings in aquifers, and human activity. The δ34SSO4 values of the Yangtze water range from 1.7‰ to 9.0‰. The SO4 in the Yangtze water are mainly from the SO4 in meteoric water, the dissolved sulfate from evaporite, and oxidation of sulfide in rocks, coal and ore deposits. The sulfate reduction and precipitation process can also affect the sulfur isotope composition of the Yangtze water. The87Sr/86Sr ratios of the Yangtze water range from 0.70823 to 0.71590, with an average value of 0.71084. The87Sr/86Sr ratio and Sr concentration are primary controlled by mixing of various sources with different87Sr/86Sr ratios and Sr contents, including the limestone, evaporite and the silicate rocks. The atmospheric precipitation and anthropogenic inputs can also contribute some Sr to the river. The δ11B values of the dissolved B in the Yangtze water range from 2.0‰ to 18.3‰, which is affected by multifactors, such as silicate weathering, carbonate weathering, evaporite dissolution, atmospheric deposition, and anthropogenic inputs.
基金Under the auspices of the Fund of Key Laboratory of Watershed Geographic Sciences,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(No.WSGS2015003)Fundamental Research Funds for the Central Universities(No.XDJK2016C093)National Natural Science Foundation of China(No.41571023)
文摘As one of the fastest developing regions in China, the middle-lower Yangtze River (MLYR) is vulnerable to floods and droughts. With obtained time series of annual highest water level (HWL), annual lowest water level (LWL) and the corresponding fiver discharges from three gauging stations in MLYR that covering the period 1987-2011, the current study evaluated the change character- istics of annual extreme water levels and the correlation with fiver discharges by using the methods of Vend test, Mann-Whitney-Pettitt (MWP) test and double mass analysis. Major result indicated a decreasing/increasing trend for annual HWL/LWL of all stations in MLYR during the study period. A change point in 1999 was identified for annual HWL at the Hankou and Datong stations. The year 2006 was found to be the critical year that the relationship between annual extreme water levels and fiver discharges changed in the MLYR. With contrast to annual LWL in MLYR, further investigation revealed that the change characteristics of annual HWL were highly consistent with regional precipitation in the Yangtze River Basin, while the linkage with Three Gorges Dam (TGD) operation is not strong. Our observation also pointed out that the effect of serious down cutting of the riverbed and the enlargement of the cross-section area during the initial period of TGD operation caused the downward trend of the relationship between annual LWL and river discharge. Whereas, the relatively raised river water level before the flood season due to TGD regulation since 2006 explained for the changing upward trend of the relationship between annual HWL and river discharge.
基金supported by the National Natural Science Foundation of China (Nos. 41476030, U1706215, and 41406081)the Project of Taishan Scholar
文摘Since 2002, an artificial water and sediment regulation(AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the Yellow River Mouth(YRM) has been observed and modeled intensively since AWSR, but preferentially for the non-storm conditions. In this study, a three-dimensional current-wave-sediment coupled model, DHI-MIKE numerical model, was used to examine the seasonal suspended-sediment transport in the YRM after the AWSR. Results show that the seasonal distribution of suspended-sediments in the YRM is dominated by wind and wave rather than river input. The major transport pathway of suspended-sediments is from the western Laizhou Bay to the Bohai Strait during the winter monsoon, especially in storm events. In addition, about 66% of the river sediments deposit within 30 km of the YRM, which is smaller than previous estimations. It suggests that the YRM has been eroded in recent decades.
基金The National Basic Research Program(973 Program)of China under contract No.2010CB428903the National Natural Science Foundation of China under contract Nos 41106050,41203085 and 41076036+1 种基金the Public Welfare Industry Research Specific Funding of China under contract Nos 201105014,201105012 and 201205008the Basic Scientific Research Fund of the Second Institute of Oceanography of State Oceanic Administration of China under contract Nos JG1108 and JG1219
文摘Surface sediments from the Changjiang River (Yangtze River) Estuary, Hangzhou Bay, and their adjacent waters were analyzed for their grain size distribution, organic carbon (OC) concentration, and stable carbon isotope composition (δ13C). Based on this analysis, about 36 surface sediment samples were selected from various environments and separated into sand (〉0.250 ram, 0.125-0.250 ram, 0.063-0.125 mm) and silt (0.025-0.063 mm) fractions by wet-sieving fractionation methods, and further into silt- (0.004-0.025 mm) and clay-sized (〈0.004 mm) fractions by centrifugal fractionation. Sediments of six grain size categories were analyzed for their OC and 613C contents to explore the grain size composition and transport paths of sedimentary OC in the study area. From fine to coarse fractions, the OC content was 1.18%, 0.51%, 0.46%, 0.42%, 0.99%, and 0.48%, respectively, while the δ13C was -21.64‰, -22.03‰, -22.52‰, -22.46‰, -22.36‰, and -22.28%0, respectively. In each size category, the OC contribution was 42.96%, 26.06%, 9.82%, 5.75%, 7.09%, and 8.33%, respectively. The OC content in clay and fine silt fractions (〈0.025 ram) was about 69.02%. High OC concentrations were mainly found in offshore modern sediments in the northeast of the Changjiang River Estuary, in modern sediments in the lower estuary of the Changjiang River and Hangzhou Bay, and in Cyclonic Eddy modern sediments to the southwest of the Cheju Island. Integrating the distribution of terrestrial OC content of each grain size category with the δ13C of the bulk sediment indicated that the terrestrial organic material in the Changjiang River Estuary was transported seaward and dispersed to the Cyclonic Eddy modern sediments to the southwest of the Cheju Island via two pathways: one was a result of the Changjiang River Diluted Water (CDW) northeastward extending branch driven by the North Jiangsu Coastal Current and the Yellow Sea Coastal Current, while the other one was the result of the CDW southward extending branch driven by the Taiwan Warm Current.
基金Funded by the Natural Science Foundation of China (No. 59778021)
文摘An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.
基金supported by the Major State Basic Research Development Program of China (973 Program) (Grant No. 2007CB411504 and 2007CB411507)the National Natural Science Foundation of China (Grant No. 40771047)
文摘The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze River's total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region's vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region's glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961–2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June–August;the close correlation between June–August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961–2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.The annual glacial meltwater runoff in the Yangtze River Source Region is projected to increase by 28.5 percent by 2050 over its 1970 value with the projected temperature increase of 2℃ and a precipitation increase of 29 mm.As a critical source of surface water for agriculture on the eastern Qinghai-Tibet Plateau and beyond,the mass retreat of glaciers in the Yangtze River Source Region will have enormous negative impacts on farming and livestock-raising ac-tivities in upper Yangtze River watershed,as well as on the viability of present ecosystems and even socioeconomic development in the upper Yangtze River Basin.
文摘Water function classification is to divide the waters in a basin or a region into different water function regions according to the natural features such as water resources condition, physical geographical location, environmental condition, etc. and social features such as the status quo of development and utilization, the requirement of social and economic development on water quantity and quality etc. Water function division has not ever been carried out in China and no ready-made theory and method can be complied with, in the meantime, it is a fundamental work with strong practical function. Therefore, the basic concept and theory foundation and research method are put forward on the base of summary of water resources management and developed and will be perfected in practice process of water function division. The Yangtze function zone covers the Yangtze river basin, the Lancang river basin and the rivers in the western area of the Lancang river in Southwest China. According to the technical outline of national water function division and combined with division practice of the Yangtze function zone, this paper presents the scope determination, procedure and method of water function division.
基金supported by the National Basic Research Program of China under Grants 2010CB951001 and 2010CB428403the National Natural Science Foundation of China under Grant 41075062the R&D Special Fund for Public Welfare Industry (Meteorology) under Grant GYHY201006037
文摘In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations of terrestrial water storage (TWS) for two periods, 1982-2005 (baseline) and 2071-2100, under future climate scenarios A2 and B2 in the Yangtze River basin. The results show that the estimated TWS during the baseline period and under the two future climate scenarios have similar seasonal amplitudes of 60-70 mm. The higher values of TWS appear in June during the baseline period and under the B2 scenario, whereas the TWS under A2 shows two peaks in response to the related precipitation pattern. It also shows that the TWS is recharged from February to June during the baseline period, but it is replenished from March to June under the A2 and B2 scenarios. An analysis of the standard derivation of seasonal and interannual TWS time series under the three scenarios demonstrates that the seasonal TWS of the southeastern part of the Yangtze River basin varies remarkably and that the southeastern and central parts of the basin have higher variations in interannual TWS. With respect to the first mode of the Empirical Orthogonal Function (EOF), the inverse-phase change in seasonal TWS mainly appears across the Guizhou-Sichuan-Shaanxi belt, and the entire basin generally represents a synchronous change in interannual TWS. As a whole, the TWS under A2 presents a larger seasonal variation whereas that under B2 displays a greater interannual variation. These results imply that climate change could trigger severe disasters in the southeastern and central parts of the basin.
文摘The occurrence of the red tide is an extremely complex process, which is considered as the comprehensive result of various factors. The Yangtze River estuary water area is always in high incidence area of red tide. In this paper, according to the events of red tide and meteorologic and hydrologic data in Yangtze River estuary water area from 2000 to 2010, by using mathematical statistics methods, we analyze the relevance between the occurrence of the red tide and the synoptic situation field, and probe into the regular patterns.
基金Jiangsu Suxie Academy of Environmental Technology for its support for the program"Study on the linkage system for emergency monitoring of water sources of the Yangtze River"(No.1203)~~
文摘The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration of water quality of the Yangtze, bringing about many bad effects on people’s life and production. Through a comprehensive analysis of water quality of the Yangtze River through Jiangsu Province, we investigated the reasons for the deterioration of its water quality, and explored countermeasure to maintain good water quality in the Yangtze with the objective to provide safe and reliable drinking water sources for people.
基金Supported by the Funds for Creative Research Groups of China (No. 40721004)the National Natural Science Foundation of China (Nos. 40776012, 40976056)the Special Funds of the State Key Laboratory of Estuarine and Coastal Research (No. 2008KYYW03)
文摘We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and their interactions on WDR using the improved version of three-dimensional numerical model ECOM. Using data for annual mean wind speed and river discharge during January, we determined that the flood, ebb, net WDR values in the North Branch of the estuary were 3.48%, 1.68%,-4.06% during spring tide, and 4.82%, 2.34%,-2.79% during neap tide, respectively. Negative net WDR values denote the transport of water from the North Branch into the South Branch. Using the same data, the corresponding ratios were 50.09%, 50.92%, 54.97%, and 52.33%, 50.15%, 43.86% in the North Channel and 38.56%, 44.78%, 103.96%, and 36.92%, 43.17%, 60.97% in the North Passage, respectively. When northerly wind speed increased, landward Ekman transport was enhanced in the North Branch, increasing the flood WDR, while the ebb WDR declined and the net WDR exhibited a significant decrease. Similarly, in the North Channel, the flood WDR is increased, the ebb WDR reduced, and the net WDR showed a marked decrease. In the North Passage, the flood WDR also increased while the ebb and net WDR declined. As the river discharge increased, the flood and ebb WDR of the North Branch increased slightly and the net WDR increased markedly. In the North Channel the flood and ebb WDR changed very slightly, while the net WDR declined during spring tides and increased during neap tides. The WDR in the North Passage changed slightly during flood and ebb tides while the net WDR showed a marked increase. The WDR values of different bifurcations and the responses to northerly wind, river discharge, and tide are discussed in comparison with variations in river topography, horizontal wind-induced circulation, and tidal-induced residual current.
文摘The Sanxia Reservoir on the Changjiang River stored water from 1 to 10 June and from 25 October to 5 November in 2003, elevating the water level to 135 and 139 m above mean sea level at the dam, respectively. A monthly dataset of water discharge, suspended sediment concentration (SSC) and sediment load of the Changjiang River from 1953 to 2003 measured at the Datong Hydrological Gauging Station of the downstreammost Changjiang River was mainly used to examine the Changjiang River sediment delivering into the sea in 2003 in response to the Sanxia Reservoir water storages in the same year. The results show that (1) compared with those in 2002, 2001, and the multi-yearly (1953-2000) average, both annual SSC and sediment load at Datong in 2003 were markedly reduced, and they were even smaller than the multi-yearly (1953-2000) minimum, although the annual runoff in 2003 did not change largely; and (2) compared with those in the corresponding months in 2002, 2001 and the multi-monthly average from 1953 to 2000, monthly SSC and sediment load at Datong both in June and November of 2003 were also markedly reduced, and those in June 2003 were even smaller than the multi-monthly minimum from 1953 to 2000. These may indicate that sediment sedimentation in the Sanxia Reservoir resulting from the Sanxia Reservoir water storage should be the main cause of the decreased annual and monthly SSC and sediment load of the Changjiang River into the sea in 2003. Besides, it seems that the Sanxia Reservoir water storage in the early June (flood season) of 2003 had more impacts on the decreased monthly SSC into the sea than that in the late October and early November (approximately non-flood season) of 2003.
基金the Key Knowledge Innovation Project of the Chinese Academy of Sciences (Nos. KZCX2-SW-317and KZCX3-SW-226).
文摘The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and E1 Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.
基金supported by the National Key Research and Development Program of China(Grants No.2019YFC0409000,2017YFC1502403,and 2018YFC0407701)the Fundamental Research Funds for the Central Universities(Grant No.B200204045).
文摘Anomalous characteristics of the atmospheric water cycle structure are highly significant to the mechanisms of seasonal-scale meteorological droughts.They also play an important role in the identification of indicative predictors of droughts.To better understand the causes of seasonal meteorological droughts in the middle and lower reaches of the Yangtze River(MLRYR),characteristics of the atmospheric water cycle structure at different drought stages were determined using standardized anomalies.The results showed that the total column water vapor(TCWV)was anomalously low during drought occurrence periods.In contrast,there were no anomalous signals at the drought persistence and recovery stages in the MLRYR.Moreover,there was no significant temporal correlation between the TCWV anomaly and seasonal-scale drought index(the 3-month standardized precipitation index(SPI_(3))).During drought events,water vapor that mainly originated from the Bay of Bengal was transported southwest of the MLRYR.Meanwhile,the anomalous signal of water vapor transport was negative at the drought appearance stage.At the drought persistence stage,the negative anomalous signal was the most significant.Water vapor flux divergence in the MLRYR showed significant positive anomalous signals during drought events,and the signal intensity shifted from an increasing to a decreasing trend at different drought stages.In addition,a significant positive correlation existed between the anomaly of water vapor flux divergence and regional SPI_(3).Overall,water vapor flux divergence is more predictive of droughts in the MLRYR.
基金supported by the National Natural Science Foundation of China(41974093,41774088,41331066 and 42174097)the Key Research Project of Frontier Bureau of Chinese Academy of Sciences(qyzdy-ssw-sys003).
文摘Water budget closure is a method used to study the balance of basin water storage and the dynamics of relevant hydrological components(e.g.,precipitation,evapotranspiration,and runoff).When water budget closure is connected with terrestrial water storage change(TWSC)estimated from Gravity Recovery and Climate Experiment(GRACE)data,variations in basin runoff can be understood comprehensively.In this study,total runoff variations in the Yangtze River Basin(YRB)and its sub-basins are examined in detail based on the water budget closure equation.We compare and combine mainstream precipitation and evapotranspiration models to determine the best estimate of precipitation minus evapotranspiration.In addition,we consider human water consumption,which has been neglected in earlier studies,and discuss its impact.To evaluate the effectiveness and accuracy of the combined hydrological models in estimating subsurface runoff,we collect discharge variations derived from in situ observations in the YRB and its sub-basins and compare these data with the models’final estimated runoff variations.The estimated runoff variations suggest that runoff over the YRB has been increasing,especially in the lower sub-basins and in the post-monsoon season,and is accompanied by apparent terrestrial water loss.