The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inh...The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.展开更多
A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a de...A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a density of 1.08 g/cm^3, and mainly contains over 65% of light CaCO3, MgCO3, CaSO4, Fe2S3 and Ca(OH)2. This paper ascertains the effect of water treatment residue on core permeability and its application in oilfields. Coreflooding tests in laboratory were conducted in two artificial cores and one natural core. Core changes were evaluated by cast model image analysis, mercury injection method and scanning electron microscopy (SEM). Fresh water was injected into another natural core, which was plugged with water treatment residue, to determine the effective life. The results indicate that the water treatment residue has a strongly plugging capability, a resistance to erosion and a long effective life, and thus it can be used as a cheap raw material for profile control. In the past 8 years, a total of 60,164 m^3 of water treatment residue has been used for profile control of 151 well treatments, with a success ratio of 98% and an effective ratio of 83.2%. In the field tests, the profile control agent increased both starting pressure and injection pressure of injectors, and decreased the apparent water injectivity coefficient, significantly improving intake profiles and lengthening average service life of injectors. 28,381 tons of additional oil were recovered from these corresponding oil wells, with economic benefits of ¥3,069.55×10^4 (RMB) and a remarkable input-output ratio of 8.6:1.展开更多
Human exposure to arsenic (As) is primarily through drinking water and food ingestion. Arsenic is naturally present in the environment and has been known as “the king of poisons” since the Middle Ages. It is mutagen...Human exposure to arsenic (As) is primarily through drinking water and food ingestion. Arsenic is naturally present in the environment and has been known as “the king of poisons” since the Middle Ages. It is mutagenic, teratogenic, and carcinogenic and approximately 70% comes from ingested food and 29% from water. Once ingested, arsenic can bio-accumulate in the human body or be excreted. Arsenic in groundwater is a main source of As in humans and the two arsenicals most abundant in water are arsenite (+3 oxidation state) and arsenate (+5 oxidation state). In order of toxicity from the most toxic to least toxic are arsines, arsenites, arsenoxides, arsenates, pentavalent arsenicals, Arsenic compounds, and metallic arsenic. Arsenic accumulates in the body when ingested in small doses. It often takes decades before physical symptoms of As poisoning show. While As is element normally found in the human body, it is highly toxic in excess amounts. The lethal dose for rates is 48 μg/L which translates to 125 mg for a middle-aged male. The maximum safe limit for As ingestion for an average Vietnamese middle-aged male is 220 μg per day. This lethal dosage puts As in a highly toxic category in food and toxicology. Most of the As in the Mekong Delta groundwater is from natural alluvial sediment sources. Other anthropic sources include the burial of millions of Vietnamese with elevated As levels since 1962, industrial sources, smelting by-products, water treatment plants, sewage and wastewater treatment discharges into waterways have added to the Mekong Delta As levels in the soil and groundwater. However, Agent Blue, the As-based herbicide, used during the Vietnam War, did contribute a significant amount (over 1,132,400 kg of manufactured (anthropic) As) to Southern Vietnam landscape. The As spikes and levels in the Mekong Delta soils and groundwater need restoration. The uptake of trace amounts of As in rice is indeed a critical food security and human health issue and requires mitigation.展开更多
文摘The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.
文摘A large amount of residue from the water treatment process has gradually accumulated and thus caused serious environmental pollution in waterflood oilfields. The water treatment residue is a grey suspension, with a density of 1.08 g/cm^3, and mainly contains over 65% of light CaCO3, MgCO3, CaSO4, Fe2S3 and Ca(OH)2. This paper ascertains the effect of water treatment residue on core permeability and its application in oilfields. Coreflooding tests in laboratory were conducted in two artificial cores and one natural core. Core changes were evaluated by cast model image analysis, mercury injection method and scanning electron microscopy (SEM). Fresh water was injected into another natural core, which was plugged with water treatment residue, to determine the effective life. The results indicate that the water treatment residue has a strongly plugging capability, a resistance to erosion and a long effective life, and thus it can be used as a cheap raw material for profile control. In the past 8 years, a total of 60,164 m^3 of water treatment residue has been used for profile control of 151 well treatments, with a success ratio of 98% and an effective ratio of 83.2%. In the field tests, the profile control agent increased both starting pressure and injection pressure of injectors, and decreased the apparent water injectivity coefficient, significantly improving intake profiles and lengthening average service life of injectors. 28,381 tons of additional oil were recovered from these corresponding oil wells, with economic benefits of ¥3,069.55×10^4 (RMB) and a remarkable input-output ratio of 8.6:1.
文摘Human exposure to arsenic (As) is primarily through drinking water and food ingestion. Arsenic is naturally present in the environment and has been known as “the king of poisons” since the Middle Ages. It is mutagenic, teratogenic, and carcinogenic and approximately 70% comes from ingested food and 29% from water. Once ingested, arsenic can bio-accumulate in the human body or be excreted. Arsenic in groundwater is a main source of As in humans and the two arsenicals most abundant in water are arsenite (+3 oxidation state) and arsenate (+5 oxidation state). In order of toxicity from the most toxic to least toxic are arsines, arsenites, arsenoxides, arsenates, pentavalent arsenicals, Arsenic compounds, and metallic arsenic. Arsenic accumulates in the body when ingested in small doses. It often takes decades before physical symptoms of As poisoning show. While As is element normally found in the human body, it is highly toxic in excess amounts. The lethal dose for rates is 48 μg/L which translates to 125 mg for a middle-aged male. The maximum safe limit for As ingestion for an average Vietnamese middle-aged male is 220 μg per day. This lethal dosage puts As in a highly toxic category in food and toxicology. Most of the As in the Mekong Delta groundwater is from natural alluvial sediment sources. Other anthropic sources include the burial of millions of Vietnamese with elevated As levels since 1962, industrial sources, smelting by-products, water treatment plants, sewage and wastewater treatment discharges into waterways have added to the Mekong Delta As levels in the soil and groundwater. However, Agent Blue, the As-based herbicide, used during the Vietnam War, did contribute a significant amount (over 1,132,400 kg of manufactured (anthropic) As) to Southern Vietnam landscape. The As spikes and levels in the Mekong Delta soils and groundwater need restoration. The uptake of trace amounts of As in rice is indeed a critical food security and human health issue and requires mitigation.