期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of Whole Membrane Water Treatment Technology in Environmental Protection
1
作者 Cuiyan Wang 《Journal of World Architecture》 2020年第5期7-9,共3页
In the current social development of our country,environmental protection has become a key content,and water treatment process is a key step to achieve environmental protection.This paper analyzes the application of w... In the current social development of our country,environmental protection has become a key content,and water treatment process is a key step to achieve environmental protection.This paper analyzes the application of whole membrane water treatment technology in environmental protection.It is hoped that this analysis can be helpful for the rational application of the whole membrane water treatment technology and the improvement of environmental protection quality. 展开更多
关键词 Environmental protection water treatment process Whole membrane water treatment technology TECHNOLOGY
下载PDF
Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes 被引量:6
2
作者 Yang-ying Zhao Fan-xin Kong +4 位作者 Zhi Wang Hong-wei Yang Xiao-mao Wang Yuefeng F. Xie T. David Waite 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第6期193-205,共13页
This study was conducted to assess the merits and limitations of various high-pressure membranes, tight nanofiltration (NF) membranes in particular, for the removal of trace organic compounds (TrOCs). The performa... This study was conducted to assess the merits and limitations of various high-pressure membranes, tight nanofiltration (NF) membranes in particular, for the removal of trace organic compounds (TrOCs). The performance of a low-pressure reverse osmosis (LPRO) membrane (ESPA1), a tight NF membrane (NF90) and two loose NF membranes (HL and NF270) was compared for the rejection of 23 different pharmaceuticals (PhACs). Efforts were also devoted to understand the effect of adsorption on the rejection performance of each membrane. Difference in hydrogen bond formation potential (HFP) was taken into consideration. Results showed that NF90 performed similarly to ESPA1 with mean rejection higher than 95%. NF270 outperformed HL in terms of both water permeability and PhAC rejection higher than 90%. Electrostatic effects were more significant in PhAC rejection by loose NF membranes than tight NF and LPRO membranes. The adverse effect of adsorption on rejection by HL and ESPA1 was more substantial than NF270 and NF90, which could not be simply explained by the difference in membrane surface hydrophobicity, selective layer thickness or pore size. The HL membrane had a lower rejection of PhACs of higher hydrophobicity (log D〉0) and higher HFP (〉0.02). Nevertheless, the effects of PhAC hydrophobicity and HFP on rejection by ESPA1 could not be discerned. Poor rejection of certain PhACs could generally be explained by aspects of steric hindrance, electrostatic interactions and adsorption. High-pressure membranes like NF90 and NF270 have a high promise in TrOC removal from contaminated water. 展开更多
关键词 Trace organic compounds (TrOCs) Nanofiltration (NF) Adsorption membrane properties water treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部