Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level ...Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level.展开更多
螺旋管蒸汽发生器是液态金属快堆中能量传递的核心设备,其运行的稳定性、安全性对核电站的运行有至关重要的影响。为此,本文构建了液态金属快堆螺旋管蒸汽发生器一次侧、二次侧耦合传热的三维数值模型,分别基于经济合作与发展组织核能署...螺旋管蒸汽发生器是液态金属快堆中能量传递的核心设备,其运行的稳定性、安全性对核电站的运行有至关重要的影响。为此,本文构建了液态金属快堆螺旋管蒸汽发生器一次侧、二次侧耦合传热的三维数值模型,分别基于经济合作与发展组织核能署(The Organisation for Economic Co-operation and Development,OECD/NEA)物性手册和美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)数据库建立液态金属和水-水蒸气变物性计算关联式,采用Lee相变模型计算二次侧水-水蒸气蒸发过程中两相间的质量传递。基于实验数据,分别对本文模型一次侧传热以及二次侧传热的计算可靠性进行了验证。最后以铅铋快堆为例,研究了不同一次侧进口参数下蒸汽发生器一、二次侧之间的耦合传热特性,并与传统水冷堆进行了对比。结果表明:在同等条件下,相比于传统水冷堆,一次侧采用铅铋液态金属时,一、二次侧之间的壁面热流密度明显提升,热流密度峰值可达1439.97 kW·m^(-2),比水冷堆相应数值提升5~6倍,这导致二次侧管内气相蒸发过程明显加剧,体积含气率急剧上升;同时,一、二次侧之间的沿程热流密度分布更加不均匀,沿程热流密度分布相对偏差值比水冷堆相应数值增大3~4倍。随着一次侧进口铅铋温度从350℃增大到450℃,一、二次侧之间的壁面热流密度随之增大,对应的热流密度峰值从950.7 kW·m^(-2)增大到1439.97 kW·m^(-2),提升约1.5倍,同时一、二次侧之间的沿程热流密度分布更加不均匀,不均匀度增大20%。展开更多
This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste e...This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste exhaust heat associated with gas turbine operation has necessitated the need for CHP application for greater fuel efficiency. This would render gas turbine cycles environ-mentally-friendly, and more economical. However, choosing a particular engine cycle option for small-scale CHP requires information about performances of CHP engine cycle options. The investigation encompasses comparative assessment of simple cycle (SC), recuperated (RC), and intercooled-recuperated (ICR) small-scale aero-derivative industrial gas turbines combined-heat-and-power (SS-ADIGT-CHP). Small-scale ADIGT engines of 1.567 MW derived from helicopter gas turbines are herein analysed in combined-heat-and-power (CHP) application. It was found that in this category of ADIGT engines, better CHP efficiency is exhibited by RC and ICR cycles than SC engine. The CHP efficiencies of RC, ICR, and SC small-scale ADIGT-CHP cycles were found to be 71%, 60%, and 56% respectively. Also, RC engine produces the highest heat recovery steam generator (HRSG) duty. The HRSG duties were found to be 3171.3 kW for RC, 2621.6 kW for ICR, and 3063.1 kW for SC. These outcomes would actually meet the objective of aiding informed preliminary choice of small-scale ADIGT engine cycle options for CHP application.展开更多
At present, the main attention of researchers is paid to the deterioration of heat transfer when heating the outer surface of the pipe with the liquid or steam, flowing inside it, in the presence of films or deposits ...At present, the main attention of researchers is paid to the deterioration of heat transfer when heating the outer surface of the pipe with the liquid or steam, flowing inside it, in the presence of films or deposits on its inner surface. However, when pipe is heating by heat carrier medium, flowing inside it, film on the inner pipe surface serve a dual protective function, protecting the pipe from corrosion and reducing its thermal stress. The article represents the results of the computational analysis of protective films influence on the thermal stressed state of headers and steam pipelines of combined-cycle power plants (CCPP) heat-recovery steam generators at different transient operating conditions particularly at startups from different initial temperature states and thermal shock. It is shown that protective films have a significant influence on the stresses magnitude and damage accumulation mainly for great temperature disturbances (for thermal shock). Calculations were carried out at various thicknesses of films and assuming that their thermal conductivity less than thermal conductivity of the steam pipelines metal.展开更多
基金Project(51276023) supported by the National Natural Science Foundation of ChinaProject(09k069) supported by the Open Project Funded by Universities Innovation Platform, Hunan Province, ChinaProject(2011GK311) supported by the Office of Science and Technology of Hunan Province, China
文摘Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level.
文摘螺旋管蒸汽发生器是液态金属快堆中能量传递的核心设备,其运行的稳定性、安全性对核电站的运行有至关重要的影响。为此,本文构建了液态金属快堆螺旋管蒸汽发生器一次侧、二次侧耦合传热的三维数值模型,分别基于经济合作与发展组织核能署(The Organisation for Economic Co-operation and Development,OECD/NEA)物性手册和美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)数据库建立液态金属和水-水蒸气变物性计算关联式,采用Lee相变模型计算二次侧水-水蒸气蒸发过程中两相间的质量传递。基于实验数据,分别对本文模型一次侧传热以及二次侧传热的计算可靠性进行了验证。最后以铅铋快堆为例,研究了不同一次侧进口参数下蒸汽发生器一、二次侧之间的耦合传热特性,并与传统水冷堆进行了对比。结果表明:在同等条件下,相比于传统水冷堆,一次侧采用铅铋液态金属时,一、二次侧之间的壁面热流密度明显提升,热流密度峰值可达1439.97 kW·m^(-2),比水冷堆相应数值提升5~6倍,这导致二次侧管内气相蒸发过程明显加剧,体积含气率急剧上升;同时,一、二次侧之间的沿程热流密度分布更加不均匀,沿程热流密度分布相对偏差值比水冷堆相应数值增大3~4倍。随着一次侧进口铅铋温度从350℃增大到450℃,一、二次侧之间的壁面热流密度随之增大,对应的热流密度峰值从950.7 kW·m^(-2)增大到1439.97 kW·m^(-2),提升约1.5倍,同时一、二次侧之间的沿程热流密度分布更加不均匀,不均匀度增大20%。
文摘This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste exhaust heat associated with gas turbine operation has necessitated the need for CHP application for greater fuel efficiency. This would render gas turbine cycles environ-mentally-friendly, and more economical. However, choosing a particular engine cycle option for small-scale CHP requires information about performances of CHP engine cycle options. The investigation encompasses comparative assessment of simple cycle (SC), recuperated (RC), and intercooled-recuperated (ICR) small-scale aero-derivative industrial gas turbines combined-heat-and-power (SS-ADIGT-CHP). Small-scale ADIGT engines of 1.567 MW derived from helicopter gas turbines are herein analysed in combined-heat-and-power (CHP) application. It was found that in this category of ADIGT engines, better CHP efficiency is exhibited by RC and ICR cycles than SC engine. The CHP efficiencies of RC, ICR, and SC small-scale ADIGT-CHP cycles were found to be 71%, 60%, and 56% respectively. Also, RC engine produces the highest heat recovery steam generator (HRSG) duty. The HRSG duties were found to be 3171.3 kW for RC, 2621.6 kW for ICR, and 3063.1 kW for SC. These outcomes would actually meet the objective of aiding informed preliminary choice of small-scale ADIGT engine cycle options for CHP application.
文摘At present, the main attention of researchers is paid to the deterioration of heat transfer when heating the outer surface of the pipe with the liquid or steam, flowing inside it, in the presence of films or deposits on its inner surface. However, when pipe is heating by heat carrier medium, flowing inside it, film on the inner pipe surface serve a dual protective function, protecting the pipe from corrosion and reducing its thermal stress. The article represents the results of the computational analysis of protective films influence on the thermal stressed state of headers and steam pipelines of combined-cycle power plants (CCPP) heat-recovery steam generators at different transient operating conditions particularly at startups from different initial temperature states and thermal shock. It is shown that protective films have a significant influence on the stresses magnitude and damage accumulation mainly for great temperature disturbances (for thermal shock). Calculations were carried out at various thicknesses of films and assuming that their thermal conductivity less than thermal conductivity of the steam pipelines metal.