期刊文献+
共找到15,021篇文章
< 1 2 250 >
每页显示 20 50 100
Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions 被引量:4
1
作者 Jingui Wei Qiang Chai +5 位作者 Wen Yin Hong Fan Yao Guo Falong Hu Zhilong Fan QimingWang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期122-140,共19页
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H... The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas. 展开更多
关键词 water and N reduction plant density MAIZE grain yield N uptake compensation effect
下载PDF
A Preliminary Study on Models of Root Water Uptake Based on Root Weight
2
作者 厉玉昇 《Agricultural Science & Technology》 CAS 2014年第9期1586-1588,共3页
Water uptake by crop roots is influenced by many factors. In this study, on the basis of previous studies, root water uptake models were established with the root weight as a dependent variable from the perspective of... Water uptake by crop roots is influenced by many factors. In this study, on the basis of previous studies, root water uptake models were established with the root weight as a dependent variable from the perspective of root biomass changes according to the theory of soil water dynamics. The established models were verified and evaluated using two indicators: root-mean-square error (RMSE) and mean absolute percentage error (MAPE). The results indicated that the annual variation range of root-mean-square error (RMSE) was 0.477-1.231, with an aver- age of 0.810; the annual variation range of mean absolute percentage error (MAPE) was 1.082%-4.052%, with an average of 2.520%, suggesting that the simulation accuracy basically met the requirements. The established numerical models of root water uptake and the compiled program exhibit high simulation accuracy, which can perfectly simulate soil water dynamics during the growth period of crops under nat- ural conditions. 展开更多
关键词 Root weight Root water uptake model STUDY
下载PDF
Influence of water coupling coefficient on the blasting effect of red sandstone specimens 被引量:2
3
作者 Yang Li Renshu Yang +1 位作者 Yanbing Wang Dairui Fu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期148-166,共19页
This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation i... This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent. 展开更多
关键词 water coupling coefficient Radial uncoupled charge Numerical simulation Fractal dimension
下载PDF
Seismic performance evaluation of water supply pipes installed in a full-scale RC frame structure based on a shaking table test 被引量:1
4
作者 Wu Houli Guo Endong +2 位作者 Wang Jingyi Dai Xin Dai Chenxi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期163-178,共16页
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal... As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes. 展开更多
关键词 water supply pipe different materials shaking table test amplification factor seismic fragility
下载PDF
Atomically dispersed Ni electrocatalyst for superior urea-assisted water splitting 被引量:1
5
作者 Fang Luo Shuyuan Pan +3 位作者 Yuhua Xie Chen Li Yingjie Yu Zehui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期1-6,I0002,共7页
Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formatio... Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting. 展开更多
关键词 Urea oxidation reaction Hydrogen evolution reaction Nickel single atoms water splitting
下载PDF
Engineering of Self-Supported Electrocatalysts on a Three-Dimensional Nickel Foam Platform for Efficient Water Electrolysis 被引量:1
6
作者 Ceneng Chen Xian Wang +6 位作者 Zijun Huang Jiahui Mo Xiaoyan Zhang Chao Peng Mohamed Khairy Junjie Ge Zhi Long 《Transactions of Tianjin University》 EI CAS 2024年第2期103-116,共14页
Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although inten... Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although intensive efforts have been committed to achieve a hydrogen economy,the expensive noble metal-based catalysts remain under consideration.Therefore,the engineering of self-supported electrocatalysts prepared using a direct growth strategy on three-dimensional(3D)nickel foam(NF)as a conductive substrate has garnered significant interest.This is due to the large active surface area and 3D porous network offered by these electrocatalysts,which can enhance the synergistic eff ect between the catalyst and the substrate,as well as improve electrocatalytic performance.Hydrothermal-assisted growth,microwave heating,electrodeposition,and other physical methods(i.e.,chemical vapor deposition and plasma treatment)have been applied to NF to fabricate competitive electrocatalysts with low overpotential and high stability.In this review,recent advancements in the development of self-supported electrocatalysts on 3D NF are described.Finally,we provide future perspectives of self-supported electrode platforms in electrochemical water splitting. 展开更多
关键词 Nickel foam water splitting Surface modification Hydrothermal method Microwave-assisted method ELECTRODEPOSITION Chemical vapor deposition Plasma treatment
下载PDF
Analysis of faulting destruction and water supply pipeline damage from the first mainshock of the February 6,2023 Türkiye earthquake doublet 被引量:1
7
作者 Xiaoqing Fan Libao Zhang +2 位作者 Juke Wang Yefei Ren Aiwen Liu 《Earthquake Science》 2024年第1期78-90,共13页
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw... In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized. 展开更多
关键词 Türkiye earthquake fault displacement near-fault ground motion velocity pulse water supply pipeline
下载PDF
Superwetting Ag/α-Fe_(2)O_(3) anchored mesh with enhanced photocatalytic and antibacterial activities for efficient water purification 被引量:1
8
作者 Jiakai Li Changpeng Lv +5 位作者 Jiajia Song Xiaoling Zhang Xizhen Huang Yingzhuo Ma Haijie Cao Na Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期89-103,共15页
Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica... Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice. 展开更多
关键词 Superwetting Ag/α-Fe_(2)O_(3)heterostructure Enhanced photocatalytic and antibacterial activities water purification Long-term reusability
下载PDF
Decoupled water electrolysis:Flexible strategy for pure hydrogen production with small voltage inputs
9
作者 Kexin Zhou Jiahui Huang +3 位作者 Daili Xiang Aijiao Deng Jialei Du Hong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期340-356,共17页
Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the... Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the world's hydrogen is produced by reforming fossil fuels;however,this hydrogen-making technology is not sustainable or environmentally friendly because ofits high energy consumption and large carbon emissions.Renewables-driven water splitting(2H_(2)0-2H_(2)+0_(2))becomes an extensively studied scheme for sustain-able hydrogen production.Conventional water electrolysis requires an input voltage higher than 1.23 V and forms a gas mixture of H_(2)/O_(2),which results in high electricity consumption,potential safety hazards,and harmful reactive oxygen species.By virtue of the auxiliary redox mediators(RMs)as the robust H^(+)/e^(-)reservoir,decoupled electrolysis splits water at a much lower potential and evolves O_(2)(H_(2)O+RMS_(ox)-O_(2)+H-RMS_(red))and H_(2)(H-RMS_(red)-H_(2)+RMS_(ox))at separate times,rates,and spaces,thus pro-ducing the puretarget hydrogen gas safely.Decoupled electrolysis has accelerated the development ofwater electrolysis technology for H_(2) production.However,itis still lack of a comprehensive and in-depth review in this field based on different types of RMs.This review highlights the basic principles and critical progress of this emerging water electrolysis mode over the past decade.Several representative examples are then dis-played in detail according to the differences in the RMs.The rational choice and design of RMs have also been emphasized.Subsequently,novel applications of decoupled water splitting are briefly discussed,including the manufacture of valuable chemicals,Cl_(2) production,pollutant degradation,and other half-reactions in artificial photosynthesis.Finally,thekey characteristics and disadvantages of each type of mediator are sum-marized in depth.In addition,we present an outlook for future directions in decoupled water splitting.Thus,the flexibility in the design of mediators provides huge space for improving this electrochemical technology.@2024 Science Press and Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by ELSEVIER B.V.and Science Press.All rights reserved. 展开更多
关键词 Hydrogen production Conventional water splitting Decoupled water splitting Redox mediators Biomimetics
下载PDF
Effect of varying soil water stress regimes on nutrient uptake and biomass production in Dalbergia sissoo seedlings in Indian desert 被引量:5
10
作者 G. Singh Bilas Singh 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第4期307-313,I0004,I0005,共9页
One-year-old seedlings of Dalbergia sissoo from a single provenance were planted in non-weighing lysimeter tanks in July 1998 with a view to provide optimize irrigation parameters in desert areas. Varying water regime... One-year-old seedlings of Dalbergia sissoo from a single provenance were planted in non-weighing lysimeter tanks in July 1998 with a view to provide optimize irrigation parameters in desert areas. Varying water regimes were maintained by re-irrigating the seedlings at 36.2 mm (W1), 26.5 mm (W2), 20.2 mm (W3) and 18.1 mm (W4) treatments when the soil water content decreased to 7.56%, 5.79%, 4.44%, 3.23% in the respective treatments. Height, collar diameter, number of leaves and leaf area were highest (p 〈 0.01) for the seedlings irrigated at W1 levek Above-mentioned growth parameters did not differ between W1 and W2 treatments but the seedlings in W2 level had highest biomass per liter of water use (i.e., water use efficiency, WUE). Irrigation levels of W3 to W5 negatively affected seedling growth, biomass production and nutrient accumulation. Soil water availability below W2 level (i.e., 5.79%) caused an increase in percentage of root biomass to the total biomass of the seedling. However, there was a decrease in percentage of leaf dry biomass in W3 and W4 treatments and in percentage of stem dry biomass in the seedlings of W5 treatment. Seedlings in W5 treatment survived till at soil water potential of-1.96 MPa. Limitation of soil water availability in W3 and W4 treatments affected growth and biomass production of D. sissoo seedlings. W: level was best for growth and biomass production in which water use efficiency was highest. Therefore, better growth and biomass production of D. sissoo seedlings could be obtained by irrigating the seedlings at soil water content of≥5.79% in the loamy sand soil. 展开更多
关键词 arid region irrigation levels seedling survival: soil water content tree growth
下载PDF
Towards high-performance and robust anion exchange membranes(AEMs)for water electrolysis:Super-acid-catalyzed synthesis of AEMs
11
作者 Geun Woong Ryoo Sun Hwa Park +3 位作者 Ki Chang Kwon Jong Hun Kang Ho Won Jang Min Sang Kwon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期478-510,I0012,共34页
The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen pro... The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications. 展开更多
关键词 Green hydrogen production water electrolysis Anion exchange membrane water electrolyzer(AEMWE) Anion exchange membranes(AEMs) Super-acid-catalyzed condensation(SACC)
下载PDF
Analysis of the effect of the 2021 Semeru eruption on water vapor content and atmospheric particles using GNSS and remote sensing
12
作者 Mokhamad Nur Cahyadi Arizal Bawasir +7 位作者 Syachrul Arief Amien Widodo Meifal Rusli Deni Kusumawardani Yessi Rahmawati Ana Martina Putra Maulida Hilda Lestiana 《Geodesy and Geodynamics》 EI CSCD 2024年第1期33-41,共9页
Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle ... Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO_(2)content,which spreaded for tens of kilometers.SO_(2)content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period. 展开更多
关键词 Semeru GNSS water vapor RAINFALL SO_(2)
下载PDF
Exploring groundwater quality in semi-arid areas of Algeria:Impacts on potable water supply and agricultural sustainability
13
作者 Noua ALLAOUA Hinda HAFID Haroun CHENCHOUNI 《Journal of Arid Land》 SCIE CSCD 2024年第2期147-167,共21页
Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well a... Groundwater quality assessment is important to assure safe and durable water use.In semi-arid areas of Algeria,groundwater represents the main water resource for drinking water supply of the rural population as well as for irrigation of agricultural lands.Groundwater samples from wells and springs were collected from the Gargaat Tarf and Annk Djemel sub-watersheds of the Oum El Bouaghi,Algeria,and were analyzed and compared with the World Health Organization(WHO)standards.Results showed that most of the measured physical and chemical parameters exceeded the quality limits according to the WHO standards.Groundwater had a slightly alkaline water pH(7.00-7.79),electrical conductivity>1500μS/cm,chloride>500 mg/L,calcium>250 mg/L,and magnesium>155 mg/L.Water quality index(WQI)results showed that 68%of the area had excellent water quality,24%of the samples fell into good category,and only 8%were of poor quality and unsuitable for human consumption.Six wells in the area showed bacterial contamination.Total coliforms(453.9(±180.3)CFU(colony-forming units)/100 mL),fecal coliforms(243.2(±99.2)CFU/100 mL),and fecal streptococci(77.9(±32.0)CFU/100 mL)loads were above the standard limits set by the WHO.These results confirmed that water resources in the study area were strongly influenced by anthropogenic activities and were not recommended for consumption as drinking water. 展开更多
关键词 bacteriological indicator GROUNDwater waterSHED physical-chemical parameter water quality index
下载PDF
Defect Engineering and Carbon Supporting to Achieve Ni‑Doped CoP_(3) with High Catalytic Activities for Overall Water Splitting
14
作者 Daowei Zha Ruoxing Wang +5 位作者 Shijun Tian Zhong‑Jie Jiang Zejun Xu Chu Qin Xiaoning Tian Zhongqing Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期569-584,共16页
This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OE... This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)in alkaline media.Specifically,the nitrogen-doped carbon nanofiber-supported Ni-doped CoP_(3) with rich P defects(Pv·)on the carbon cloth(p-NiCoP/NCFs@CC)is synthesized through a plasma-assisted phosphorization method.The p-NiCoP/NCFs@CC is an efficient and stable catalyst for the HER and the OER.It only needs overpotentials of 107 and 306 mV to drive 100 mA cm^(-2) for the HER and the OER,respectively.Its catalytic activities are higher than those of other catalysts reported recently.The high activities of the p-NiCoP/NCFs@CC mainly arise from its peculiar structural features.The density functional theory calculation indicates that the Pv·richness,the Ni doping,and the carbon supporting can optimize the adsorption of the H atoms at the catalyst surface and promote the strong electronic couplings between the carbon nanofiber-supported p-NiCoP with the surface oxide layer formed during the OER process.This gives the p-NiCoP/NCFs@CC with the high activities for the HER and the OER.When used in alkaline water electrolyzers,the p-NiCoP/NCFs@CC shows the superior activity and excellent stability for overall water splitting. 展开更多
关键词 PLASMA ELECTROCATALYSIS Hydrogen evolution reaction Oxygen evolution reaction water splitting
下载PDF
Heterosis for water uptake by maize (Zea mays L.) roots under water deficit: responses at cellular, single-root and whole-root system levels 被引量:2
15
作者 XiaoFang LIU SuiQi ZHANG Lun SHAN 《Journal of Arid Land》 SCIE CSCD 2013年第2期255-265,共11页
To examine the potential heterosis for water uptake by maize roots, the hydraulic properties of roots in the F1 hybrid (Hudan 4) were compared with those of its inbred parents ( 478 and Tian 4) at cellular, singl... To examine the potential heterosis for water uptake by maize roots, the hydraulic properties of roots in the F1 hybrid (Hudan 4) were compared with those of its inbred parents ( 478 and Tian 4) at cellular, single-root and whole-root system levels under well-watered and water-deficit conditions. The cell hydraulic conductivity (Lpc) decreased under water deficit, but the Lpc of the F1 was higher than that of its inbred parents with or without stress from water deficit. Marked reductions in Lpc were observed following Hg2+ treatment. The hydrostatic hydraulic conductivity of single roots (hydrostatic Lpsr) varied among genotypes under the two water treatments, with the highest in the F1 and the lowest in 478. Radial hydraulic conductivity (radial Lpsr) and axial hydraulic conductance (Lax) of the three genotypes varied similarly as Lpsr. The variations in hydraulic parameters were related to root anatomy. Radial Lpsr was negatively correlated with the ratio of cortex width to root diameter (R2=-0.77, P〈0.01), whereas Lax was positively correlated with the diameter of the central xylem vessel (R2=0.75, P〈0.01) and the cross-sectional area of xylem vessels (R2=0.93, P〈0.01 ). Hydraulic conductivity (Lpwr) and conductance (Lwr) of the whole-root system followed the same trend under the two water treatments, with the highest values in the F1. The results demonstrated that heterosis for water uptake by roots of the F1 occurred at cellular, single-root and whole-root system levels under well-watered and water-deficit conditions. 展开更多
关键词 HETEROSIS water uptake hydraulic conductivity water deficit MAIZE
下载PDF
In-situ building of multiscale porous NiFeZn/NiZn-Ni heterojunction for superior overall water splitting
16
作者 Ya-xin LI Hong-xiao YANG +4 位作者 Qiu-ping ZHANG Tian-zhen JIAN Wen-qing MA Cai-xia XU Qiu-xia ZHOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2972-2986,共15页
The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A sel... The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm^(2),along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm^(2) at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm^(2) for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting. 展开更多
关键词 NiFeZn alloy multiple interface porous structure DEALLOYING overall water splitting
下载PDF
A Wave Superposition-Finite Element Method for Calculating the Radiated Noise Generated by Volumetric Targets in Shallow Water
17
作者 TANG Yu-hang ZHAO Zhe +3 位作者 LI Hai-chao PANG Fu-zhen TANG Yang DU Yuan 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期845-854,共10页
A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the rad... A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the radiation sound field of the spherical sound source is equivalent to the linear superposition of the radiation sound field of several internal point sound sources,and then the radiated noise induced by spherical sound source can be predicted quickly.The accuracy and efficiency of the method are verified by comparing with the numerical results of finite element method,and the rapid prediction of underwater radiated noise of cylindrical shell is carried out based on the method.The results show that compared with the finite element method,the relative error of the calculation results under different simulation conditions does not exceed 0.1%,and the calculation time is about 1/10 of the finite element method,so this method can be used to solve the radiated noise of shallow underwater targets. 展开更多
关键词 shallow water radiation noise wave superposition principle cylindrical shell finite element
下载PDF
Cure Behaviors and Water Up-take Evaluation of a New Waterborne Epoxy Resin 被引量:1
18
作者 万涛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期437-442,共6页
Cure behaviors and water up-take evaluation of a low cost, ecofriendly and water soluble epoxy resin prepared by reaction between epichlorohydrin and PEG400, PEG600 and PEG1000, respectively, were investigated using n... Cure behaviors and water up-take evaluation of a low cost, ecofriendly and water soluble epoxy resin prepared by reaction between epichlorohydrin and PEG400, PEG600 and PEG1000, respectively, were investigated using non-isothermal differential scanning calorimetry (DSC) and gravimetrical method, respectively. Factors affecting the cure behaviors as well as water up-take of waterborne epoxy resins, such as amount of triethylenetetramine (TETA) and triethylene diamine (TEDA), PEG molecular weight, curing temperature, were systematically investigated. The prepared water soluble epoxy resins can be cured under room temperature with the shape of the curing curves similar to that expected for an autocatalytic reaction. 展开更多
关键词 CURE waterBORNE epoxy resin water up-take
下载PDF
Superhydrophobic melamine sponge prepared by radiation-induced grafting technology for efficient oil-water separation
19
作者 Ying Sun Wen-Rui Wang +7 位作者 Dan-Yi Li Si-Yi Xu Lin Lin Man-Li Lu Kai Fan Chen-Yang Xing Lin-Fan Li Ji-Hao Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第9期103-114,共12页
This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil... This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil–water separation.The obtained ME-g-PLMA sponge had an excellent pore structure with superhydrophobic(water contact angle of 154°)and superoleophilic properties.It can absorb various types of oils up to 66–168 times its mass.The ME-g-PLMA sponge can continuously separate oil slicks in water by connecting a pump or separating oil underwater with a gravity-driven device.In addition,it maintained its highly hydrophobic properties even after long-term immersion in different corrosive solutions and repeated oil adsorption.The modified ME-g-PLMA sponge exhibited excellent separation properties and potential for oil spill cleanup. 展开更多
关键词 Radiation-induced graft polymerization Oil–water separation SPONGE SupERHYDROPHOBIC
下载PDF
Selective adsorption of tetracycline by β-CD-immobilized sodium alginate aerogel coupled with ultrafiltration for reclaimed water
20
作者 Xi Quan Jun Zhang +2 位作者 Linlin Yin Wei Zuo Yu Tian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期27-34,共8页
In this work,a novel composite material based on β-cyclodextrin-immobilized sodium alginate aerogel(β-CD/NaAlg) was developed utilizing cross-linker of epichlorohydrin and applied as an adsorbent to remove tetracycl... In this work,a novel composite material based on β-cyclodextrin-immobilized sodium alginate aerogel(β-CD/NaAlg) was developed utilizing cross-linker of epichlorohydrin and applied as an adsorbent to remove tetracycline antibiotics from reclaimed wastewater.A series of characterizations were utilized to confirm the successful synthesis of the adsorbent and this β-CD/NaAlg presented a three-dimensional network at the nanoscale or microscale.Under optimal conditions(pH=4,t=8 h,β-CD:NaAlg=9,adsorbent dosage = 1.5 g·L-1),the maximum removal rate of β-CD/NaAlg to tetracycline was 70%.The adsorption behavior of tetracycline on β-CD/NaAlg conformed to the Freundlich isotherm model(R2=0.9977) and the pseudo-second-order kinetic model(R^(2)=0.9993).Moreover,the adsorbent still removed 55.3% of tetracycline after five cycles.Specially,the adsorbent was integrated with ultrafiltration to adsorb tetracycline antibiotics from simulated reclaimed wastewater,and the removal rate of tetracycline reached 78.9% within 2 h.The existence of Cr(Ⅵ) had a negligible impact on tetracycline removal,while the presence of humic acid exhibited a promoting effect.The possible adsorption mechanisms were also elucidated through X-ray photoelectron spectroscopy and density functional theory analysis.In summary,β-CD/NaAlg represents an environmentally friendly,efficient,and sustainable adsorbent for removing tetracycline antibiotics from reclaimed water. 展开更多
关键词 b-CD/NaAlg aerogel Covalent grafting Tetracycline antibiotics ULTRAFILTRATION Selective adsorption Reclaimed water
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部