The upper-troposphere water vapor (UTWV) band brightness temperature (BT) dataset derived from the High-resolution Infrared Radiation Sounder (HIRS) channel 12 of the National Oceanic and Atmospheric Administration (N...The upper-troposphere water vapor (UTWV) band brightness temperature (BT) dataset derived from the High-resolution Infrared Radiation Sounder (HIRS) channel 12 of the National Oceanic and Atmospheric Administration (NOAA) polar satellites from 1979 to 1995 is used to analyze the seasonal and interannual variations for the global monsoon regions. Results show that (i) there are three major regions where the UTWV band BT varies significantly with season, i.e., South Asia, the western coastal South-North America tropical region and the low-latitude African region; (ii) UTWV band BT clearly reveals the water vapor temporal/spatial features as well as the atmospheric circulation structure over the low-latitude during the monsoon onset; and (iii) there is a remarkable relationship between the interannual variation of the UTWV band BT over the monsoon regions and the sea surface temperature anomaly in the eastern equatorial Pacific.展开更多
-In this paper,by using ISODATA of fuzzy cluster,the water masses classification of the upper layer in the E-quatorial Western Pacific is carried out. On the basis of the degree of the membership in the obtained optim...-In this paper,by using ISODATA of fuzzy cluster,the water masses classification of the upper layer in the E-quatorial Western Pacific is carried out. On the basis of the degree of the membership in the obtained optima) classification matrix, the solid distribution of the detailed structure of water masses is made. The water of the upper layer,consisting of six water masses,may be divided into three layers,i, e. ,the surface,subsurface and intermediate layer. Besides analyzing the features of various water masses,a discussion on their distribution structure and formation mechanism is also made.展开更多
This paper presents an analysis of a technique for retrieving upper tropospheric relative humidity through the GMS-5 satellite's 6.7-micron water vapor channel brightness temperature. NCEP analysis shows that a cr...This paper presents an analysis of a technique for retrieving upper tropospheric relative humidity through the GMS-5 satellite's 6.7-micron water vapor channel brightness temperature. NCEP analysis shows that a critical assumption of the retrieval theory, namely the constant temperature lapse rate, matches only in the tropical atmosphere. By statistical analyses of brightness temperature simulated by a radiative transfer model and of relative humidity, we examine the effect of lapse rate on this retrieval method and obtain retrieval parameters and error estimates applicable to the GMS-5 satellite over East Asia. If the retrieval parameters are properly chosen, the relative error of retrieving the upper tropospheric relative humidity in this region is less than 10%, and if applied to the low-latitude summer atmosphere, it is less than 5%.展开更多
This study assesses the potential impacts of climate change on water resources and the effect of statistical bias correction on the projected climate change signal in hydrological variables over the Upper Senegal Basi...This study assesses the potential impacts of climate change on water resources and the effect of statistical bias correction on the projected climate change signal in hydrological variables over the Upper Senegal Basin (West Africa). Original and bias corrected climate data from the regional climate model REMO were used as input for the Max Planck Institute for Meteorology-Hydrology Model (MPI-HM) to simulate river discharge, runoff, soil moisture and evapotranspiration. The results during the historical period (1971-2000) show that using the bias corrected input yields a better representation of the mean river flow regimes and the 10th and 90th percentiles of river flow at the outlet of the Upper Senegal Basin (USB). The Nash-Sutcliffe efficiency coefficient is 0.92 using the bias corrected input, which demonstrates the ability of the model in simulating river flow. The percent bias of 3.88% indicates a slight overestimation of the river flow by the model using the corrected input. The evaluation demonstrates the ability of the bias correction and its necessity for the simulation of historical river regimes. As for the potential changes of hydrological variables by the end of 21st century (2071-2100), a general decrease of river discharge, runoff, actual evapotranspiration, soil moisture is found under two Representative Concentration Pathways (RCP4.5 and RCP8.5) in all simulations. The decrease is higher under RCP8.5 with uncorrected data in the northern basin. However, there are some localized increases in some parts of the basin (e.g. Guinean Highlands). The projected climate change signal of these above variables has the same spatial pattern and tendency for the uncorrected and bias corrected data although the magnitude of the corrected signal is somewhat lower than that uncorrected. Furthermore, the available water resources are projected to substantially decrease by more than -50% in the majority of the basin (especially in driest and hottest northern basin with RCP8.5 scenario) for all data, except the Guinean highlands where no change is projected. The comparison of simulations driven with uncorrected and bias corrected input reveals that the bias correction does not substantially change the signal of future changes of hydrological variables for both scenarios over the USB even though there are differences in magnitude and deviations in some parts of the basin.展开更多
The Lerma River Upper Basin is located between Almoloya del Rio shallow lakes and Atlacomulco Municipality in the State of Mexico;is a natural resource essential to human activities in its surroundings and serves as a...The Lerma River Upper Basin is located between Almoloya del Rio shallow lakes and Atlacomulco Municipality in the State of Mexico;is a natural resource essential to human activities in its surroundings and serves as a source of electricity and drinking water for Mexico City. However, this river is threatened by over-exploitation of its aquifers, disappearance of many of its wellsprings and uncontrolled discharges of wastewater from all sorts. Thus, the aim of this work was to evaluate the water quality in the Upper Lerma River Basin using WQI proposed by the NSF and compare these results with those obtained by the National Water Commission of Mexico (CNA). WQI was calculated using seven parameters: dissolved oxygen, pH, DOB5, temperature change, total phosphates, nitrates, and total solids obtained in four different sampling campaigns carried out in 2005, 2006 and 2012. The results showed that water quality in the Upper Lerma River is bad, mainly associated with high levels of BOD5, nitrates and phosphates found. The results obtained with WQI yielded the same diagnosis that the studies carried out by the CNA, in which water quality was unacceptable. It is worth noting that there is a significant water quality deterioration in the Upper Lerma River Basin with the course of the years, because in 2012 were observed the lower index values regarding 2005 and 2006, so it is imperative to implement measures to restore and preserve the water quality of this important river.展开更多
<span style="font-family:""><span style="font-family:Verdana;">Water resource is an important supporting material for life support system and eco</span><span style="f...<span style="font-family:""><span style="font-family:Verdana;">Water resource is an important supporting material for life support system and eco</span><span style="font-family:Verdana;">nomic development, and the sustainable development and utilization of water resource </span></span><span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> the guarantee of social sustainable development. The upper Minjiang River is the most important source of water supply for the Chengdu Plain. With the water resources of the upper Minjiang River facing the problems of overall water volume reduction, flood and water pollution, etc.</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> based on the optimal allocation theory, this paper constructs an optimal allocation model of water resourc</span><span style="font-family:Verdana;">es in the upper reaches of the Minjiang River, analyzes its characteristics and proposes some relevant countermeasures and suggestions to solve the existing problems, aiming to provide reference</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> for the sustainable utilization of water resources in the upper reaches of the Minjiang River.展开更多
Recent climate change has brought changes to the water regime that has affected the traditional agro-pastoral production systems and livelihoods in the Upper Kaligandaki Basin of the Nepal Himalayas. Based on fieldwor...Recent climate change has brought changes to the water regime that has affected the traditional agro-pastoral production systems and livelihoods in the Upper Kaligandaki Basin of the Nepal Himalayas. Based on fieldwork and available meteorological and hydrological data, this paper examines the changing water regime and various adaptation strategies that local farmers have adopt- ed in this cold alid region. Increasing temperature and decreasing min|hll and snowfall have resulted in a negative water balance. In this scenario, lhmlers have implemented six major adaptive strategies in the trans-Himalayan Upper Mustang Valley.展开更多
The study examined climate influenced challenges of accessibility to water by households downstream of the Upper Benue River Basin, Nigeria. Literatures related to the topic being investigated were reviewed. The study...The study examined climate influenced challenges of accessibility to water by households downstream of the Upper Benue River Basin, Nigeria. Literatures related to the topic being investigated were reviewed. The study adopted a descriptive survey design. The population of the study consisted of communities in Adamawa, Gombe, Bauchi and Taraba states. Eight different communities, two in each local government were sampled for the study. Simple random and purposive samplings were used for the study. A total of 351 respondents were selected for the study using Krejcie and Morgan sample size determination. Data analysis was done using frequency tables percentages and mean statistics. The findings of the study showed that climate variability has great impact on water stress and threats to households’ downstream in Upper Benue River basin represented with a mean 3.85 (decrease in the quality and quantity of surface water) as well as 3.43 (drying up of rivers and lakes). The study also revealed that water stress induced by climate variability has a significant effect on household livelihoods represented by 87% of the respondents in the study area. It was also revealed that that households downstream the basin are vulnerable to climate change and households in the study area have development strategies to contend with water stress so as to better their livelihood among which is surface water harvesting (2.78), reducing the number of times dishes are washed (2.96), reducing the quantity of water used for bathing (3.0) among others. The study recommended that stakeholders and the government should make proactive efforts to ensuring that alternative water sources are established in the study area to reduce water stress among the rural populace.展开更多
Current research has been focused on heavy metals pollution in surface water and groundwater and effect on irrigated soil from El Minia Province, north Upper Egypt. Concentration of heavy metals (e.g., As, Co, Hg, Ni,...Current research has been focused on heavy metals pollution in surface water and groundwater and effect on irrigated soil from El Minia Province, north Upper Egypt. Concentration of heavy metals (e.g., As, Co, Hg, Ni, Se, Cd and Cr) in surface water, groundwater and irrigated soil samples is most significantly affected by leachate of many pollutants as the factories, agricultural activities, urban and natural processes. Microbiological parameters and microscopic investigations are revealed that some localities are common by micro-organisms, which are unsuitable for drinking waters.展开更多
Under artificially simulated conditions, the water purification effects of Lythrum salicaria, Typha minima, Scirpus validus, Iris wilsonii and their configurations were studied. The results showed that various aquatic...Under artificially simulated conditions, the water purification effects of Lythrum salicaria, Typha minima, Scirpus validus, Iris wilsonii and their configurations were studied. The results showed that various aquatic plants and their configurations showed purification effects for total nitrogen(TN), nitrate nitrogen(NO_3^-), total phosphorus(TP), orthophosphate(PO_4^(3-)) and chemical oxygen demand(COD) in water body, and the purification effects of aquatic plant configurations were better than those of single ones. Regression analysis was conducted for dynamics of various water quality indicators. The removal rates of TN and COD within 50 d by the combination of L. salicaria and I. wilsonii were 73.83% and 77.4%, respectively, with the best purification effect; the removal rate of NO_3^- within 20 d by the combination of S. validus and I. wilsonii was 89.41%; and the combination of S. validus and I. wilsonii showed the best removal effect for TP and PO43-, of which the 50-d removal rates were 88.98% and 92.39%, respectively. Reasonable choice of local aquatic plants and their optimal combinations can be applied in the improvement of water quality of rivers.展开更多
文摘The upper-troposphere water vapor (UTWV) band brightness temperature (BT) dataset derived from the High-resolution Infrared Radiation Sounder (HIRS) channel 12 of the National Oceanic and Atmospheric Administration (NOAA) polar satellites from 1979 to 1995 is used to analyze the seasonal and interannual variations for the global monsoon regions. Results show that (i) there are three major regions where the UTWV band BT varies significantly with season, i.e., South Asia, the western coastal South-North America tropical region and the low-latitude African region; (ii) UTWV band BT clearly reveals the water vapor temporal/spatial features as well as the atmospheric circulation structure over the low-latitude during the monsoon onset; and (iii) there is a remarkable relationship between the interannual variation of the UTWV band BT over the monsoon regions and the sea surface temperature anomaly in the eastern equatorial Pacific.
文摘-In this paper,by using ISODATA of fuzzy cluster,the water masses classification of the upper layer in the E-quatorial Western Pacific is carried out. On the basis of the degree of the membership in the obtained optima) classification matrix, the solid distribution of the detailed structure of water masses is made. The water of the upper layer,consisting of six water masses,may be divided into three layers,i, e. ,the surface,subsurface and intermediate layer. Besides analyzing the features of various water masses,a discussion on their distribution structure and formation mechanism is also made.
基金supported by the National Natural Science Foundation of China under Grant No.40075002
文摘This paper presents an analysis of a technique for retrieving upper tropospheric relative humidity through the GMS-5 satellite's 6.7-micron water vapor channel brightness temperature. NCEP analysis shows that a critical assumption of the retrieval theory, namely the constant temperature lapse rate, matches only in the tropical atmosphere. By statistical analyses of brightness temperature simulated by a radiative transfer model and of relative humidity, we examine the effect of lapse rate on this retrieval method and obtain retrieval parameters and error estimates applicable to the GMS-5 satellite over East Asia. If the retrieval parameters are properly chosen, the relative error of retrieving the upper tropospheric relative humidity in this region is less than 10%, and if applied to the low-latitude summer atmosphere, it is less than 5%.
文摘This study assesses the potential impacts of climate change on water resources and the effect of statistical bias correction on the projected climate change signal in hydrological variables over the Upper Senegal Basin (West Africa). Original and bias corrected climate data from the regional climate model REMO were used as input for the Max Planck Institute for Meteorology-Hydrology Model (MPI-HM) to simulate river discharge, runoff, soil moisture and evapotranspiration. The results during the historical period (1971-2000) show that using the bias corrected input yields a better representation of the mean river flow regimes and the 10th and 90th percentiles of river flow at the outlet of the Upper Senegal Basin (USB). The Nash-Sutcliffe efficiency coefficient is 0.92 using the bias corrected input, which demonstrates the ability of the model in simulating river flow. The percent bias of 3.88% indicates a slight overestimation of the river flow by the model using the corrected input. The evaluation demonstrates the ability of the bias correction and its necessity for the simulation of historical river regimes. As for the potential changes of hydrological variables by the end of 21st century (2071-2100), a general decrease of river discharge, runoff, actual evapotranspiration, soil moisture is found under two Representative Concentration Pathways (RCP4.5 and RCP8.5) in all simulations. The decrease is higher under RCP8.5 with uncorrected data in the northern basin. However, there are some localized increases in some parts of the basin (e.g. Guinean Highlands). The projected climate change signal of these above variables has the same spatial pattern and tendency for the uncorrected and bias corrected data although the magnitude of the corrected signal is somewhat lower than that uncorrected. Furthermore, the available water resources are projected to substantially decrease by more than -50% in the majority of the basin (especially in driest and hottest northern basin with RCP8.5 scenario) for all data, except the Guinean highlands where no change is projected. The comparison of simulations driven with uncorrected and bias corrected input reveals that the bias correction does not substantially change the signal of future changes of hydrological variables for both scenarios over the USB even though there are differences in magnitude and deviations in some parts of the basin.
文摘The Lerma River Upper Basin is located between Almoloya del Rio shallow lakes and Atlacomulco Municipality in the State of Mexico;is a natural resource essential to human activities in its surroundings and serves as a source of electricity and drinking water for Mexico City. However, this river is threatened by over-exploitation of its aquifers, disappearance of many of its wellsprings and uncontrolled discharges of wastewater from all sorts. Thus, the aim of this work was to evaluate the water quality in the Upper Lerma River Basin using WQI proposed by the NSF and compare these results with those obtained by the National Water Commission of Mexico (CNA). WQI was calculated using seven parameters: dissolved oxygen, pH, DOB5, temperature change, total phosphates, nitrates, and total solids obtained in four different sampling campaigns carried out in 2005, 2006 and 2012. The results showed that water quality in the Upper Lerma River is bad, mainly associated with high levels of BOD5, nitrates and phosphates found. The results obtained with WQI yielded the same diagnosis that the studies carried out by the CNA, in which water quality was unacceptable. It is worth noting that there is a significant water quality deterioration in the Upper Lerma River Basin with the course of the years, because in 2012 were observed the lower index values regarding 2005 and 2006, so it is imperative to implement measures to restore and preserve the water quality of this important river.
文摘<span style="font-family:""><span style="font-family:Verdana;">Water resource is an important supporting material for life support system and eco</span><span style="font-family:Verdana;">nomic development, and the sustainable development and utilization of water resource </span></span><span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> the guarantee of social sustainable development. The upper Minjiang River is the most important source of water supply for the Chengdu Plain. With the water resources of the upper Minjiang River facing the problems of overall water volume reduction, flood and water pollution, etc.</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> based on the optimal allocation theory, this paper constructs an optimal allocation model of water resourc</span><span style="font-family:Verdana;">es in the upper reaches of the Minjiang River, analyzes its characteristics and proposes some relevant countermeasures and suggestions to solve the existing problems, aiming to provide reference</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> for the sustainable utilization of water resources in the upper reaches of the Minjiang River.
基金the financial support for hydrological research in the Upper Kaligandaki Basin in 2011
文摘Recent climate change has brought changes to the water regime that has affected the traditional agro-pastoral production systems and livelihoods in the Upper Kaligandaki Basin of the Nepal Himalayas. Based on fieldwork and available meteorological and hydrological data, this paper examines the changing water regime and various adaptation strategies that local farmers have adopt- ed in this cold alid region. Increasing temperature and decreasing min|hll and snowfall have resulted in a negative water balance. In this scenario, lhmlers have implemented six major adaptive strategies in the trans-Himalayan Upper Mustang Valley.
文摘The study examined climate influenced challenges of accessibility to water by households downstream of the Upper Benue River Basin, Nigeria. Literatures related to the topic being investigated were reviewed. The study adopted a descriptive survey design. The population of the study consisted of communities in Adamawa, Gombe, Bauchi and Taraba states. Eight different communities, two in each local government were sampled for the study. Simple random and purposive samplings were used for the study. A total of 351 respondents were selected for the study using Krejcie and Morgan sample size determination. Data analysis was done using frequency tables percentages and mean statistics. The findings of the study showed that climate variability has great impact on water stress and threats to households’ downstream in Upper Benue River basin represented with a mean 3.85 (decrease in the quality and quantity of surface water) as well as 3.43 (drying up of rivers and lakes). The study also revealed that water stress induced by climate variability has a significant effect on household livelihoods represented by 87% of the respondents in the study area. It was also revealed that that households downstream the basin are vulnerable to climate change and households in the study area have development strategies to contend with water stress so as to better their livelihood among which is surface water harvesting (2.78), reducing the number of times dishes are washed (2.96), reducing the quantity of water used for bathing (3.0) among others. The study recommended that stakeholders and the government should make proactive efforts to ensuring that alternative water sources are established in the study area to reduce water stress among the rural populace.
文摘Current research has been focused on heavy metals pollution in surface water and groundwater and effect on irrigated soil from El Minia Province, north Upper Egypt. Concentration of heavy metals (e.g., As, Co, Hg, Ni, Se, Cd and Cr) in surface water, groundwater and irrigated soil samples is most significantly affected by leachate of many pollutants as the factories, agricultural activities, urban and natural processes. Microbiological parameters and microscopic investigations are revealed that some localities are common by micro-organisms, which are unsuitable for drinking waters.
基金Sponsored by Key Technology Research and Development Program of Hebei Province(15227652D)Dynamic Control Technology of Sandy Land Protection Forest System Structure in Northern North China(2016YFC0500802-06)
文摘Under artificially simulated conditions, the water purification effects of Lythrum salicaria, Typha minima, Scirpus validus, Iris wilsonii and their configurations were studied. The results showed that various aquatic plants and their configurations showed purification effects for total nitrogen(TN), nitrate nitrogen(NO_3^-), total phosphorus(TP), orthophosphate(PO_4^(3-)) and chemical oxygen demand(COD) in water body, and the purification effects of aquatic plant configurations were better than those of single ones. Regression analysis was conducted for dynamics of various water quality indicators. The removal rates of TN and COD within 50 d by the combination of L. salicaria and I. wilsonii were 73.83% and 77.4%, respectively, with the best purification effect; the removal rate of NO_3^- within 20 d by the combination of S. validus and I. wilsonii was 89.41%; and the combination of S. validus and I. wilsonii showed the best removal effect for TP and PO43-, of which the 50-d removal rates were 88.98% and 92.39%, respectively. Reasonable choice of local aquatic plants and their optimal combinations can be applied in the improvement of water quality of rivers.