期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation 被引量:24
1
作者 ZHOU Qun JU Cheng-xin +4 位作者 WANG Zhi-qin ZHANG Hao LIU Li-jun YANG Jian-chang ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1028-1043,共16页
This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than... This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than check rice. Two super rice cultivars and two elite check rice cultivars were grown in pots with three soil moisture levels, well watered (WW), moderate water deficit (MWD) and severe water deficit (SWD). Two cultivars, each for super rice and check rice, were grown in field with three irrigation regimes, alternate wetting and moderate drying (AWMD), alternate wetting and severe drying (AWSD) and conventional irrigation (CI). Compared with that under WW, grain yield was significantly decreased under MWD and SWD treatments, with less reduction for super rice than for check rice. Super rice had higher percentage of productive tillers, deeper root distribution, higher root oxidation activity, and greater aboveground biomass production at mid and late growth stages than check rice, especially under WMD and WSD. Compared with CI,AWMD increased, whereasAWSD decreased grain yield, with more increase or less decrease for super rice than for check rice. Both MWD and SWD treatments and eitherAWMD orAWSD regime significantly increased WUE compared with WW treatment or CI regime, with more increase for super rice than for check rice. The results suggest that super rice has a stronger ability to cope with soil water deficit and holds greater promising to increase both grain yield and WUE by adoption of moderate AWD irrigation. 展开更多
关键词 super rice soil water deficit alternate wetting and drying (AWD) grain yield water use efficiency
下载PDF
Effects of Multi-Stage Continuous Drought on Photosynthetic Characteristics, Yield and Water Use Efficiency of Winter Wheat 被引量:1
2
作者 Daoxi Li Ruitao Lou +2 位作者 Yanbin Li Zepeng Bian Ya’nan Zhu 《Phyton-International Journal of Experimental Botany》 SCIE 2020年第3期691-703,共13页
A drought event can cause entire crops to fail or yield loss.In order to study the effects of continuous drought on photosynthetic characteristics,yield,and water use efficiency(WUE)of winter wheat(Triticum aestivum L... A drought event can cause entire crops to fail or yield loss.In order to study the effects of continuous drought on photosynthetic characteristics,yield,and water use efficiency(WUE)of winter wheat(Triticum aestivum L.),the winter wheat variety“Aikang 58”was selected as test material with controlling the water of the pot-planted winter wheat under a mobile rainout shelter.Based on foot planting and safe wintering,winter wheat was evaluated under different drought conditions,including light,moderate and severe drought at the jointing(B),heading(C),and filling(G)stages.The soil water content was controlled in a range of 60%to 70%,50%to 60%,and 40%to 50%of the field capacity,respectively.In the experiment,there were 9 single-stage droughts,3 three-stage droughts,and 1 test control(totaling 13 trials).The results are as follows:Under a single-stage drought,the change of net photosynthetic rate(Pn)and stomatal conductance(Gs)have similar trends,and they both decrease significantly with the severity of the drought.Under three-stage continuous droughts,the change curve of Gs shows a constant downward trend;the change curve of Pn showed a“valley shape,”and the minimum value of Pn appeared at the heading stage.All droughts will reduce the yield of winter wheat.Under the three-stage continuous drought conditions,except for light drought,moderate drought and severe drought will cause significant yield reduction,mainly due to lack of water at the jointing and heading stages.Continuous drought will reduce the WUE,and the difference will reach a significant level under moderate and severe drought.The present results suggested that when water resources are scarce,it is a better irrigation model to save water and achieve high grain yield by applying appropriate water stress(60%–70%FC)during the critical growth period of winter wheat. 展开更多
关键词 Continuous drought net photosynthetic rate stomatal conductance Triticum aestivum L water use efficiency grain yield
下载PDF
Regulation effects of water and nitrogen on yield,water,and nitrogen use efficiency of wolfberry
3
作者 GAO Yalin QI Guangping +7 位作者 MA Yanlin YIN Minhua WANG Jinghai WANG Chen TIAN Rongrong XIAO Feng LU Qiang WANG Jianjun 《Journal of Arid Land》 SCIE CSCD 2024年第1期29-45,共17页
Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitr... Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitrogen management is important for solving these problems.Based on field trials in 2021 and 2022,this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height,stem diameter,crown width,yield,and water(WUE)and nitrogen use efficiency(NUE).The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity(θ_(f)),and four water levels,i.e.,adequate irrigation(W0,75%-85%θ_(f)),mild water deficit(W1,65%-75%θ_(f)),moderate water deficit(W2,55%-65%θ_(f)),and severe water deficit(W3,45%-55%θ_(f))were used,and three nitrogen application levels,i.e.,no nitrogen(N0,0 kg/hm^(2)),low nitrogen(N1,150 kg/hm^(2)),medium nitrogen(N2,300 kg/hm^(2)),and high nitrogen(N3,450 kg/hm^(2))were implied.The results showed that irrigation and nitrogen application significantly affected plant height,stem diameter,and crown width of wolfberry at different growth stages(P<0.01),and their maximum values were observed in W1N2,W0N2,and W1N3 treatments.Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment.Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment.However,under other water treatments,the values first increased and then decreased with increasing nitrogen application.Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment.Irrigation water use efficiency(IWUE,8.46 kg/(hm^(2)·mm)),WUE(6.83 kg/(hm^(2)·mm)),partial factor productivity of nitrogen(PFPN,2.56 kg/kg),and NUE(14.29 kg/kg)reached their highest values in W2N2,W1N2,W1N2,and W1N1 treatments.Results of principal component analysis(PCA)showed that yield,WUE,and NUE were better in W1N2 treatment,making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province,China and similar planting areas. 展开更多
关键词 water deficit growth characteristics yield water and nitrogen use efficiency principal component analysis
下载PDF
Water use efficiency and yield responses of cotton to field capacity-based deficit irrigation in an extremely arid area of China 被引量:2
4
作者 Haifeng Li Zhiming Qi +1 位作者 Dongwei Gui Fanjiang Zeng 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第6期91-101,共11页
The objectives of present investigation were to test the effects on water use efficiency(WUE)and cotton yield of implementing a range of deficit irrigation regimes triggered at specific fractions of root zone soil moi... The objectives of present investigation were to test the effects on water use efficiency(WUE)and cotton yield of implementing a range of deficit irrigation regimes triggered at specific fractions of root zone soil moisture,field capacity(θfc)and different crop phenological stages.The study was conducted on southern oasis of the Taklamakan desert,China.The cotton crop’s WUE was quantified,as were leaf photosynthesis and yield.From a photosynthetic perspective,deficit irrigation resulted in 16.8%,10.3%and 2.2%increases in leaf WUE underθfc-based regulated deficit irrigation(T1,T2,and T3),compared to the control,respectively.Cotton yield and its components were significantly affected by irrigation depths(p≤0.05).A relatively high seed yield(0.65 kg/m3)and the highest WUE were achieved,under T3(70%θfc at seedling stage,60%θfc at squaring,50%θfc at full-bloom,70%θfc at boll,70%θfc at boll cracking stage),showing it to be the most effective and productive irrigation schedule tested.As the application ofθfc-based deficit irrigation in surface-irrigated cotton fields showed great potential in saving water,maintaining a high WUE,and improving cotton seed yield,a management strategy consisting or irrigation thresholds of 70%θfc in the root zone at the seedling,boll and boll cracking stages,and of 60%θfc at the squaring stage,and 50%θfc at the full-bloom stage,would be recommended for this extremely arid region. 展开更多
关键词 regulated deficit irrigation EVAPOTRANSPIRATION seed cotton yield water use efficiency Qira Oasis
原文传递
Improving Water Use Efficiency of Wheat Crop Varieties in the North China Plain: Review and Analysis 被引量:11
5
作者 MEI Xu-rong ZHONG Xiu-li +1 位作者 Vadez Vincent LIU Xiao-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第7期1243-1250,共8页
The North China Plain (NCP), one of the most important agricultural regions in China, is facing a major water-resource crisis evoked by excessive exploitation of groundwater. To reduce water use while maintaining hi... The North China Plain (NCP), one of the most important agricultural regions in China, is facing a major water-resource crisis evoked by excessive exploitation of groundwater. To reduce water use while maintaining high crop production level, improving variety water use efficiency (WUE) is an urgent need, especially because other water-saving measures such as water delivery, irrigation, and agricultural practices have already achieved most possible progresses. Evaluation of variety WUE can be performed accurately at the individual plant level (WUEp). Reviewing the studies on physiological factors affecting WUE p performed up to date, stomatal conductance was considered to be an important trait associating closely with WUE p . The trait showed a large degree of varietal variability under well-watered conditions. Crop varieties differ highly in sensitivity of stomata to soil and air drying, with some varieties strongly reducing their stomatal conductance in contrast with those lightly regulating their stomata. As a result, difference among varieties in WUE p was enlarged under water deficit conditions in contrast with those under well-watered conditions. The relationship between stomatal conductance and yield depends on water availability of whole growing period in local areas. Usually, large stomatal conductance results in a high yield under good irrigation system, whereas a low stomatal conductance can lead to yield benefit under limited stored soil moisture conditions. In the NCP, winter wheat is the largest consumer of irrigation water, improvement strategies for high WUE aiming at wheat crops are in urgent need. We suggest, for the well-irrigated areas with excessive exploitation of groundwater, the wheat breeding program need to combine medium stomatal conductance (0.35 mmol H2O m-2 s-1 or so), high carboxylation efficiency, and high harvest index. Areas with partial/full access to irrigation, or infrequent drought, should target wheat varieties with high stomatal conductance under no water stress and low sensitivity of stomata to soil water deficit. Drought-prone rain-fed areas characterized by frequent and long terminal drought should target wheat varieties with low stomatal conductance under no water stress and high stomata sensitivity to soil drying to make water available during grain filling. 展开更多
关键词 water use efficiency yield stomatal conductance water deficit
下载PDF
Response of Gas Exchange and Water Use Efficiency to Light Intensity and Temperature in Transgenic Rice Expressing PEPC and PPDK Genes 被引量:3
6
作者 ZHANG Bian-jiang CHEN Quan-zhan +3 位作者 HUA Chun ZHOU Feng ZHOU Quan-chen JIAO De-mao 《Agricultural Sciences in China》 CAS CSCD 2009年第11期1312-1320,共9页
Aiming to controvert whether the photosynthetic capacity of transgenic rice expressing C4 genes is enhanced, with the C3-type untransformed rice (WT) and maize (a C4 plant) as controls, the activity of C4 photosyn... Aiming to controvert whether the photosynthetic capacity of transgenic rice expressing C4 genes is enhanced, with the C3-type untransformed rice (WT) and maize (a C4 plant) as controls, the activity of C4 photosynthetic enzymes, gas exchange parameters and water use efficiency (WUE) under different light intensities and temperatures, the stable carbon isotope ratio (8-3C) value and the metabolic index of active oxygen as well as plant yield parameters were determined in transgenic rice carrying the PEPC and PPDK genes (CK) in this study. The results showed that the light-saturated photosynthetic rate of CK was intermediate between that of WT and maize, with a slight bias towards that of maize. Under a high light intensity (1 200 μmol m^-2 s^-1) and high temperature (35℃), CK still exhibited higher photosynthetic capacity, while the Gs decreased. The WUE of CK was only slightly increased, and was similar to that of WT. The δ13C value indicated that CK functioned as a C3 plant. In addition, the tolerance to photo-oxidation and grain yield of CK was enhanced by sprayed with NaHSO3. In conclusion, CK possesses higher photosynthetic productivity under the conditions of high photon flux density (PFD), high temperature and spraying with NaHSO3 solution, thereby providing a new technical approach and physiological basis for constructing C4-like rice. 展开更多
关键词 transgenic rice photosynthetic characteristics water use efficiency stomatal conductance
下载PDF
Photosynthetic Water Use Efficiency of Heritage and Modern Potatoes under Limited and Unlimited Water Environments
7
作者 Isaac R. Fandika Peter D. Kemp +1 位作者 James P. Millner Dave Horne 《Agricultural Sciences》 2014年第14期1501-1512,共12页
Photosynthetic capacity for heritage (Taewa) and modern potato cultivars were compared at different water and nitrogenregimes in the glasshouse and field. The glasshouse was 2*2*4 factorial design with two irrigation:... Photosynthetic capacity for heritage (Taewa) and modern potato cultivars were compared at different water and nitrogenregimes in the glasshouse and field. The glasshouse was 2*2*4 factorial design with two irrigation: 100% ET and 60% ET;two applied N: 50 kg N ha-1 and 200 kg N ha-1, two Taewa (Moe Moe, Tutaekuri) and two modern potatoes (Moonlight, Agria). The 2009/2010 field experiment was a split-plot, with irrigation and rain-fed regimes as the main treatments: four potatoes above were sub-treatments. The 2010/2011 field experiment was a split-split-plot, with three water regimes as the main treatments: three cultivars (Moe Moe, Tutaekuri, and Agria) were subplots;two N rates were sub-sub-treatments. Gaseous exchange was measured by CIRAS-2 at different days from emergence. Leaf water potential was measured using pressure chamber method. Taewa achieved high photosynthetic WUE in glasshouse and 2010/2011 experiment by maintaining high An, low gs and low Ci compared to modern cultivars (p The An, gs and T increased with irrigation and N increase while decreasing Ci (p < 0.01). Water stress significantly increased VPD resulting in low An and photosynthetic WUE in Moonlight in the glasshouse. The leaf water potential for Taewa was very tolerant while modern potatoes were weakened by water stress. The study indicated that Taewa can be scheduled at partial irrigation without more detrimental effects on photosynthetic capacity while modern potatoes need full irrigation to avoid detrimental effects on photosynthetic capacity. 展开更多
关键词 Taewa Photosynthesis stomatal conductance (gs) Transpiration (T) Irrigation Internal Carbon concentration (Ci) Vapour Pressure deficit (VPD) Leaf water Potential and PHOTOSYNTHETIC water use efficiency (Photosynthetic WUE) SOLANUM TUBEROSUM SOLANUM andigena
下载PDF
CO_2, H_2O exchange and stomatal regulation of regenerated Camptotheca acuminata plantlets during ex vitro acclimatization 被引量:1
8
作者 WANG Hui-mei LI Yan-hua GAO Yin-xiang ZU Yuan-gang 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第4期273-276,共4页
For finding the changes in CO2, H20 exchange and their stomatal regulation during ex vitro acclimatization of regenerated Camptotheca acuminata plantlets, the net photosynthesis rate (Pn), respiration rate (Ro), l... For finding the changes in CO2, H20 exchange and their stomatal regulation during ex vitro acclimatization of regenerated Camptotheca acuminata plantlets, the net photosynthesis rate (Pn), respiration rate (Ro), light compensation point (Lc) and light saturation point (Ls), transpiration rate (Tr), stomatal conductance (gs) and water use efficiency(WUE) were measured during 37 days of ex vitro acclimatization. The results showed that Pn sharply increased until 29 days, then slightly decreased. A substantial decrease in Lc and a substantial increase of Ls in the former two weeks were observed, indicating the light regime enlargement for effective leaf photosynthesis. Tr and gs abruptly decreased during the first week then linearly increased until 29days ex vitro acclimatization, reflecting the strong regulation effect of stomata on water changes of ex vitro acclimating plantlets. Stomatal regulation effect on CO2 exchange was different from that on water exchange, i.e. P, was almost independent of gs during the first week, while P. was significantly correlated with gs thereafter (i.e. dual patterns). Different from dual patterns of gs-Pn relation, the Tr monotonously linearly increased with gs. Furthermore, WUE was almost independent on gs during the first week, while a marked decreasing tendency with gs was found thereafter. At the beginning of the acclimatization, WUE was mainly determined by photosynthetic capacity, while transpiration becomes a main determinant factor for WUE from 7 to 37 days' acclimatization. 展开更多
关键词 Camptotheca acuminate ACCLIMATIZATION Photosynthesis TRANSPIRATION water use efficiency Relation between stomatal conductance (gs) and net photosynthesis rate (Pn) gs-WUE relation
下载PDF
调亏灌溉对香梨叶片光合速率及水分利用效率的影响 被引量:12
9
作者 武阳 王伟 +3 位作者 赵智 黄兴法 范云涛 苏柳芸 《农业机械学报》 EI CAS CSCD 北大核心 2012年第11期80-86,共7页
试验研究了调亏灌溉对成龄库尔勒香梨树叶片生理指标的影响。在果实快速膨大前期分别施加了2种水分胁迫:轻度水分胁迫,灌水量为蒸发量的60%;重度水分胁迫,灌水量为蒸发量的40%。在果实快速膨大期,灌水量为蒸发量的80%。对照处理为香梨... 试验研究了调亏灌溉对成龄库尔勒香梨树叶片生理指标的影响。在果实快速膨大前期分别施加了2种水分胁迫:轻度水分胁迫,灌水量为蒸发量的60%;重度水分胁迫,灌水量为蒸发量的40%。在果实快速膨大期,灌水量为蒸发量的80%。对照处理为香梨的整个生育期灌水量均为蒸发量的80%。结果表明,调亏灌溉期间,水分胁迫显著地降低了香梨树的叶片光合速率、蒸腾速率与气孔开度;果实快速膨大期,调亏处理恢复充分灌后,叶片光合速率、蒸腾速率及气孔开度均在一定程度上恢复,轻度调亏处理恢复到与对照相同的水平,而重度的水分胁迫处理却始终低于对照。叶片蒸腾速率比光合速率对土壤水分变化更敏感,水分胁迫可提高香梨树的叶片水分利用效率。 展开更多
关键词 库尔勒香梨 调亏灌溉 光合速率 蒸腾速率 气孔开度 水分利用效率
下载PDF
ALA对冬小麦叶片气体交换和水分利用效率的影响 被引量:12
10
作者 姚素梅 刘明久 +2 位作者 茹振钢 杨文平 冯素伟 《植物营养与肥料学报》 CAS CSCD 北大核心 2010年第1期242-246,共5页
以冬小麦"百农矮抗58"为材料,研究了在始穗期喷施不同浓度(10、30、50 mg/L)的5-氨基乙酰丙酸(5-aminolevulinic acid,ALA)对冬小麦叶片气体交换和水分利用效率的影响。结果表明,105~0 mg/L ALA处理的叶片气孔导度高于不喷施的对... 以冬小麦"百农矮抗58"为材料,研究了在始穗期喷施不同浓度(10、30、50 mg/L)的5-氨基乙酰丙酸(5-aminolevulinic acid,ALA)对冬小麦叶片气体交换和水分利用效率的影响。结果表明,105~0 mg/L ALA处理的叶片气孔导度高于不喷施的对照,但在开花期和乳熟期对气孔导度的促进作用大于腊熟期 叶片净光合速率也明显高于对照。在开花期和乳熟期,ALA提高叶片的净光合速率主要是由于减少了光合的气孔限制 而在腊熟期则主要是由于减少了光合的非气孔限制。在开花期和乳熟期,105~0 mg/L ALA处理的叶片水分利用效率与对照没有显著性差异,但在腊熟期,叶片水分利用效率较对照有显著性提高。与对照相比,105~0 mg/L ALA处理冬小麦的穗粒数、千粒重和产量显著增加,其中以30 mg/L ALA处理增产效果最大。 展开更多
关键词 5-氨基乙酰丙酸 冬小麦 气孔导度 光合速率 叶片水分利用效率 产量
下载PDF
以气孔导度为显参的遥感光合水分胁迫作物产量模型研究 被引量:9
11
作者 张佳华 王长耀 《水利学报》 EI CSCD 北大核心 1999年第8期35-39,共5页
本文给出利用遥感信息和作物生理参数研究遥感—光合水分胁迫作物产量模型的概念,建立以作物气孔导度为显参的遥感—光合水分胁迫作物产量模型;对模型的参数给出求解公式,最后进行华北平原典型区的遥感—光合水分胁迫作物产量模型的... 本文给出利用遥感信息和作物生理参数研究遥感—光合水分胁迫作物产量模型的概念,建立以作物气孔导度为显参的遥感—光合水分胁迫作物产量模型;对模型的参数给出求解公式,最后进行华北平原典型区的遥感—光合水分胁迫作物产量模型的作物产量填图,并于已有模型的应用结果比较。 展开更多
关键词 遥感信息 作物 产量模型 气孔导度 水分胁迫
下载PDF
Gas exchange of Populus euphratica leaves in a riparian zone 被引量:5
12
作者 Dieter OVERDIECK Daniel ZICHE RuiDe YU 《Journal of Arid Land》 SCIE CSCD 2013年第4期531-541,共11页
Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance... Riparian vegetation belts in arid regions of Central Asia are endangered to lose their ecosystem services due to intensified land use.For the development of sustained land use,management knowledge of plant performance in relation to resource supply is needed.We estimated productivity related functional traits at the edges of the habitat of Populus euphratica Oliv.Specific leaf area (SLA) and carbon/nitrogen (C/N) ratio of P.euphratica leaves growing near a former river bank and close to moving sand dunes in the Ebinur Lake National Nature Reserve in Xinjiang,Northwest China (near Kazakhstan) were determined and daily courses of CO2 net assimilation (PN),transpiration (E),and stomatal conductance (gs) of two consecutive seasons were measured during July-August 2007 and June-July 2008.Groundwater level was high (1.5-2.5 m below ground) throughout the years and no flooding occurred at the two tree stands.SLA was slightly lower near the desert than at the former river bank and leaves contained less N in relation to C.Highest E and gs of P.euphratica were reached in the morning before noon on both stands and a second low maximum occurred in the afternoon despite of the unchanged high levels of air to leaf water vapor pressure deficit (ALVPD).Decline of gs in P.euphratica was followed by decrease of E.Water use efficiency (WUE) of leaves near the desert were higher in the morning and the evening,in contrast to leaves from the former river bank that maintained an almost stable level throughout the day.High light compensation points and high light saturation levels of PN indicated the characteristics of leaves well-adapted to intensive irradiation at both stands.In general,leaves of P.euphratica decreased their gs beyond 20 Pa/kPa ALVPD in order to limit water losses.Decrease of E did not occur in both stands until 40 Pa/kPa ALVPD was reached.Full stomatal closure of P.euphratica was achieved at 60 Pa/kPa ALVPD in both stands.E through the leaf surface amounted up to 30% of the highest E rates,indicating dependence on water recharge from the ground despite of obviously closed stomata.A distinct leaf surface temperature (Tleaf) threshold of around 30℃ also existed before stomata started to close.Generally,the differences in gas exchange between both stands were small,which led to the conclusion that micro-climatic constraints to E and photosynthesis were not the major factors for declining tree density with increasing distance from the river. 展开更多
关键词 Populus euphratica water vapor pressure deficit TRANSPIRATION stomatal conductance water use efficiency leaf functional traits
下载PDF
Alternate partial root-zone irrigation with high irrigation frequency improves root growth and reduces unproductive water loss by apple trees in arid north-west China 被引量:2
13
作者 Shaoqing DU Ling TONG +4 位作者 Shaozhong KANG Fusheng LI Taisheng DU Sien LI Risheng DING 《Frontiers of Agricultural Science and Engineering》 2018年第2期188-196,共9页
Alternate partial root-zone irrigation(APRI)can improve water use efficiency in arid areas. However,the effectiveness and outcomes of different frequencies of APRI on water uptake capacity and physiological water use ... Alternate partial root-zone irrigation(APRI)can improve water use efficiency in arid areas. However,the effectiveness and outcomes of different frequencies of APRI on water uptake capacity and physiological water use have not been reported. A two-year field experiment was conducted with two irrigation amounts(400 and500 mm) and three irrigation methods(conventional irrigation, APRI with high and low frequencies). Root length density, stomatal conductance, photosynthetic rate,transpiration rate, leaf water use efficiency, midday stem and leaf water potentials were measured. The results show that in comparison with conventional irrigation, APRI with high frequency significantly increased root length density and decreased water potentials and stomatal conductance.No differences in the above indicators between the two APRI frequencies were detected. A significantly positive relationship between stomatal conductance and root length density was found under APRI. Overall, alternate partial root-zone irrigation with high frequency has a great potential to promote root growth, expand water uptake capacity and reduce unproductive water loss in the arid apple production area. 展开更多
关键词 alternate partial root-zone irrigation apple tree leaf water use efficiency root length density stomatal conductance water potential
原文传递
黄淮海平原作物高效用水与高产协同策略(英文)
14
作者 黄桂荣 刘晓英 钟秀丽 《Agricultural Science & Technology》 CAS 2014年第12期2064-2068,共5页
黄淮海平原是我国最重要的粮食主产区之一,长期过度开采地下水已导致严重的水资源危机。提高作物水分利用效率是保存地下水资源并维持高产的重要途径。本文首先讨论了提高黄淮海平原作物水分利用效率的策略。研究表明,气孔导度特性遗传... 黄淮海平原是我国最重要的粮食主产区之一,长期过度开采地下水已导致严重的水资源危机。提高作物水分利用效率是保存地下水资源并维持高产的重要途径。本文首先讨论了提高黄淮海平原作物水分利用效率的策略。研究表明,气孔导度特性遗传变异大,其干旱胁迫响应在品种间差异显著,是影响品种WUE和产量的重要生理因素。通过品种气孔特性和地区水分条件的合理匹配对策可以协同提高作物产量和WUE。其次,讨论了灌溉制度的优化问题,提出黄淮海平原冬小麦灌溉次数至少可以减少1次(从灌溉4次减少到3次),实现在不影响产量的同时降低灌溉水用量,提高作物WUE。最后,讨论提出了秸秆覆盖和选用早发性好的品种是提高地区作物WUE的两种有效措施。 展开更多
关键词 水分利用效率 产量 气孔导度 灌溉 水分亏缺
下载PDF
A global meta-analysis of woody plant responses to elevated CO_(2):implications on biomass,growth,leaf N content,photosynthesis and water relations
15
作者 Mthunzi Mndela Julius T.Tjelele +4 位作者 Ignacio C.Madakadze Mziwanda Mangwane Igshaan M.Samuels Francuois Muller Hosia T.Pule 《Ecological Processes》 SCIE EI 2022年第1期723-743,共21页
Background:Atmospheric CO_(2)may double by the year 2100,thereby altering plant growth,photosynthesis,leaf nutrient contents and water relations.Specifically,atmospheric CO_(2)is currently 50%higher than pre-industria... Background:Atmospheric CO_(2)may double by the year 2100,thereby altering plant growth,photosynthesis,leaf nutrient contents and water relations.Specifically,atmospheric CO_(2)is currently 50%higher than pre-industrial levels and is projected to rise as high as 936μmol mol^(−1)under worst-case scenario in 2100.The objective of the study was to investigate the effects of elevated CO_(2)on woody plant growth,production,photosynthetic characteristics,leaf N and water relations.Methods:A meta-analysis of 611 observations from 100 peer-reviewed articles published from 1985 to 2021 was conducted.We selected articles in which elevated CO_(2)and ambient CO_(2)range from 600–1000 and 300–400μmol mol^(−1),respectively.Elevated CO_(2)was categorized into<700,700 and>700μmol mol^(−1)concentrations.Results:Total biomass increased similarly across the three elevated CO_(2)concentrations,with leguminous trees(LTs)investing more biomass to shoot,whereas non-leguminous trees(NLTs)invested to root production.Leaf area index,shoot height,and light-saturated photosynthesis(A_(max))were unresponsive at<700μmol mol^(−1),but increased significantly at 700 and>700μmol mol^(−1).However,shoot biomass and A_(max)acclimatized as the duration of woody plants exposure to elevated CO_(2)increased.Maximum rate of photosynthetic Rubisco carboxylation(V_(cmax))and apparent maximum rate of photosynthetic electron transport(J_(max))were downregulated.Elevated CO_(2)reduced stomatal conductance(g_(s))by 32%on average and increased water use efficiency by 34,43 and 63%for<700,700 and>700μmol mol^(−1),respectively.Leaf N content decreased two times more in NLTs than LTs growing at elevated CO_(2)than ambient CO_(2).Conclusions:Our results suggest that woody plants will benefit from elevated CO_(2)through increased photosyn-thetic rate,productivity and improved water status,but the responses will vary by woody plant traits and length of exposure to elevated CO_(2). 展开更多
关键词 Atmospheric CO_(2) Biomass production Leaf nitrogen content META-ANALYSIS Photosynthetic rate stomatal conductance water use efficiency Woody plants
原文传递
玉米生理生态指标及产量对不同生育期水分亏缺的响应 被引量:11
16
作者 张智郡 刘海军 +3 位作者 张立伟 刘钰 丁梅 朱明承 《灌溉排水学报》 CSCD 北大核心 2018年第4期9-17,共9页
【目的】探究不同程度水分亏缺条件下,东北地区玉米生理生态指标及产量的变化。【方法】采用盆栽方式,在玉米拔节初期(A)、拔节后期(B)、抽雄期(C)、灌浆期(G)分别设计亏水1 d、亏水3 d、亏水5 d、亏水7 d的处理和1个对照试验(充分供水,... 【目的】探究不同程度水分亏缺条件下,东北地区玉米生理生态指标及产量的变化。【方法】采用盆栽方式,在玉米拔节初期(A)、拔节后期(B)、抽雄期(C)、灌浆期(G)分别设计亏水1 d、亏水3 d、亏水5 d、亏水7 d的处理和1个对照试验(充分供水,CK),研究了不同生育期水分亏缺对玉米气孔导度、耗水量及产量的影响。【结果】(1)随着亏水程度增加,叶片气孔导度也随之降低,其中C5、C7处理降低最为显著,4个生育期内亏水1、3 d的处理与CK差异较小。当土壤含水率低于0.15 cm3/cm3时,气孔导度一般低于50 mmol/(m2·s)。(2)亏水条件下作物的耗水量小于充分供水条件下作物的耗水量,其中4个生育期亏水1 d的处理变化均不明显,C3处理略微降低,4个生育期亏水5、7 d的处理与CK相比降低明显。土壤含水率小于0.15 cm3/cm3时,作物耗水量仅为正常条件下的1/3;复水后其耗水量也不能恢复到充分供水的水平。(3)整体上,玉米产量及产量性状随着亏水程度的增加而降低,严重亏水使产量平均降低了49.1%。抽雄期亏水对产量影响最明显,各处理产量及产量性状差异性显著,秃尖长的增加是产量降低的主要原因。【结论】轻度亏水处理(亏水1、3 d)对玉米生理生态指标及产量影响较小,从C3处理开始水分亏缺对其影响表现明显。抽雄期水分亏缺对玉米产量的形成不利,基于气孔导度、耗水量和产量变化,土壤体积含水率0.15 cm3/cm3可以作为判断玉米受到水分胁迫的阈值下限,抽雄期充分供水有利于高产。 展开更多
关键词 玉米 亏水处理 气孔导度 耗水量 土壤水分 产量
下载PDF
Short-term Response of Photosynthesis and Chlorophyll Content to Salinity Stress in Two Mangrove Species:Aegiceras corniculatum and Kandelia candel
17
作者 Xiaoyue WANG Ruili LI 《Meteorological and Environmental Research》 CAS 2020年第3期60-63,69,共5页
There were fewer comparative studies on the adaptability of mangrove plants with two different salt secretion mechanisms to salinity stress. In this study,the seedlings of mangrove plants Aegiceras corniculatum and Ka... There were fewer comparative studies on the adaptability of mangrove plants with two different salt secretion mechanisms to salinity stress. In this study,the seedlings of mangrove plants Aegiceras corniculatum and Kandelia candel were selected as the research objects,and the methods of hydroponics with different salinity gradients were used. The salinity of 0‰,10‰,and 30‰ was applied respectively to simulate the adaptability of seedlings at low,moderate,and severe salinity stresses. Based on the results,the short-term responses of photosynthesis and chlorophyll content to salinity stress in two mangrove species with different salt secretion mechanisms were analyzed and discussed. The results show that A. corniculatum was more tolerant to10‰ salinity than K. candel,and the net photosynthetic rate(Pn),transpiration rate(Tr),stomatal conductance( Gs) and water use efficiency(WUE)were also relatively higher;both A. corniculatum and K. candel could acclimate the low salinity(0‰),but showed severe osmotic stress at 30‰ salinity;A. corniculatum was more sensitive to severe salinity(30‰) than K. candel. These results can be of help to provide a theoretical support for the selection of species for mangrove wetlands restoration and seedlings acclimatization in tidal flats. 展开更多
关键词 Salinity stress Net photosynthetic rate stomatal conductance water use efficiency Chlorophyll content
下载PDF
不同灌水量对拔节孕穗期水稻生理及水分利用率的影响(英文) 被引量:1
18
作者 李轲 景元书 +1 位作者 谭孟祥 薛杨 《Agricultural Science & Technology》 CAS 2017年第11期2014-2018,2025,共6页
[目的]研究不同灌水量对水稻叶片生理及水分利用率的影响。[方法]在南京信息工程大学农业气象试验站进行了3个不同处理的灌溉试验。[结果]淹灌处理下的水稻叶温比湿润灌溉低0.4~0.7℃;当光合有效辐射强度的范围在800~1 800μmol/(m^2... [目的]研究不同灌水量对水稻叶片生理及水分利用率的影响。[方法]在南京信息工程大学农业气象试验站进行了3个不同处理的灌溉试验。[结果]淹灌处理下的水稻叶温比湿润灌溉低0.4~0.7℃;当光合有效辐射强度的范围在800~1 800μmol/(m^2·s)时,淹灌处理下的水稻叶片平均气孔导度比湿润灌溉大0.123~0.183 mol H_2O/(m^2·s),叶片水分利用率高0.24 g/kg;每天10:00之后淹灌的水分利用率始终高于湿润灌溉处理;与湿润灌溉处理相比,淹灌处理的水稻不仅叶片水分利用率较高,而且最终产量也有比较明显的提升,其水稻增产量达5.89%~13.97%。[结论]该研究为田间管理提供了实际参考依据。 展开更多
关键词 气孔导度 水稻 水分利用率 产量
下载PDF
Ecophysiological response to irrigation of two olive cultivars grown in a high-density orchard 被引量:1
19
作者 G. A. Vivaldi G. Strippoli S. Camposeo 《Agricultural Sciences》 2013年第8期16-20,共5页
High-density oliveculture system needs irrigation and introduces new cultivars in new environments. So the evaluation of varietal ecophysiological response to irrigation is a crucial topic. For this reason it was plan... High-density oliveculture system needs irrigation and introduces new cultivars in new environments. So the evaluation of varietal ecophysiological response to irrigation is a crucial topic. For this reason it was planned a research on two cultivars, Coratina and Arbequina, trained according to high-density system. In 2009 the irrigation was conducted according to the conventional management by applying an irrigation frequency of 4 days. The leaf water potentials reached values similar to the limits reported for the recovery within 48 hours. However, plants showed a leaf water status and gas exchange recovery just after 24 hours from watering. The results highlighted some varietal differences: Arbequina showed a better response to irrigation, while Coratina performed a higher water use efficiency by a lower leaf transpiration. 展开更多
关键词 Leaf water Potential stomatal conductance Net ASSIMILATION water use efficiency
下载PDF
Effects of regulated deficit irrigation on soil salinity,physiological processes and fruit quality of gray jujube under desert conditions 被引量:3
20
作者 Zhipeng Liu Chengli Zhu +5 位作者 Shuyu Wu Weihua Guo Yitikaer Abudushalamu Xiyun Jiao Shipei Gao Jie Wang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第3期52-59,共8页
Regulated deficit irrigation(RDI)was applied to gray jujube trees in an oasis region,to determine the effects of this irrigation system on soil salinity,gray jujube physiological processes,fruit yield,and fruit qualit... Regulated deficit irrigation(RDI)was applied to gray jujube trees in an oasis region,to determine the effects of this irrigation system on soil salinity,gray jujube physiological processes,fruit yield,and fruit quality.Treatments consisted of severe,moderate and low deficit irrigation(irrigated with 85%,70%and 55%of CK,respectively)at the flowering stage to fruit set stage.During the other growth stages,all treatments were irrigated with 80%of pan evaporation,which was the same as that in control.The results indicated that soil salinity was enhanced during the periods of water stress,but the high value of soil salinity declined by 3.48%-37.27%,at each depth,after irrigation was resumed.RDI caused a decline in the photosynthetic rate,transpiration rate,and stomatal conductance,but enhanced the water use efficiency of the leaves.However,the leaf photosynthetic rate was effectively enhanced after the recovery of irrigation,especially in the moderate deficit irrigation treatment,which exceeded the control.This led to an improved fruit yield,which was 9.57%higher than that of the control.The deficit treatments caused a significant increase in the soluble solid content,soluble sugar content,single fruit weight and sugar/acid ratio.Enhanced vitamin C content,resulting from deficit treatments,has also been observed in the gray jujube.Therefore,this research shows that RDI provides some benefits in the production of gray jujube trees in desert conditions. 展开更多
关键词 regulated deficit irrigation soil salinity gray jujube water use efficiency photosynthetic rate transpiration rate stomatal conductance soluble solid content sugar/acid ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部