Climate feedbacks have been usually estimated using changes in radiative effects associated with increased global-mean surface temperature. Feedback uncertainties, however, are not only functions of global-mean surfac...Climate feedbacks have been usually estimated using changes in radiative effects associated with increased global-mean surface temperature. Feedback uncertainties, however, are not only functions of global-mean surface temperature increase. In projections by global climate models, it has been demonstrated that the geographical variation of sea surface temperature change brings significant uncertainties into atmospheric circulation and precipitation responses at regional scales. Here we show that the spatial pattern of surface warming is a major contributor to uncertainty in the combined water vapour-lapse rate feedback. This is demonstrated by computing the global-mean radiative effects of changes in air temperature and relative humidity simulated by 31 climate models using a methodology based on radiative kernels. Our results highlight the important contribution of regional climate change to the uncertainty in climate feedbacks, and identify the regions of the world where constraining surface warming patterns would be most effective for higher skill of climate projections.展开更多
The seasonal phase-locking feature of the Indian Ocean Dipole(IOD)is well documented.However,the seasonality ten-dency of sea surface temperature anomalies(SSTAs)during the development of the IOD has not been widely i...The seasonal phase-locking feature of the Indian Ocean Dipole(IOD)is well documented.However,the seasonality ten-dency of sea surface temperature anomalies(SSTAs)during the development of the IOD has not been widely investigated.The SSTA tendencies over the two centers of the IOD peak in September-October-November are of different monthly amplitudes.The SSTA tendency over the west pole is small before June-July-August but dramatically increases in July-August-September.Meanwhile,the SSTA tendency over the east pole gradually increases before June-July-August and decreases since then.The growth rate attribution of the SSTAs is achieved by examining the roles of radiative and non-radiative air-sea coupled thermodynamic processes through the climate feedback-response analysis method(CFRAM).The CFRAM results indicate that oceanic dynamic processes largely contribute to the total SSTA tendency for initiating and fueling the IOD SSTAs,similar to previous studies.However,these results cannot ex-plain the monthly amplitudes of SSTA tendency.Four negative feedback processes(cloud radiative feedback,atmospheric dynamic processes,surface sensible,and latent heat flux)together play a damping role opposite to the SSTA tendency.Nevertheless,the sea surface temperature-water vapor feedback shows positive feedback.Specifically,variations in SSTAs can change water vapor con-centrations through evaporation,resulting in anomalous longwave radiation that amplifies the initial SSTAs through positive feedback.The effect of water vapor feedback is well in-phase with the monthly amplitudes of SSTA tendency,suggesting that the water vapor feedback might modulate the seasonally dependent SSTA tendency during the development of the IOD.展开更多
To understand the strengths and limitations of a low-resolution version of Flexible Global Ocean Atmosphere-Land-Sea-ice (FGOALS-gl) to simulate the climate of the last millennium, the energy balance, climate sensit...To understand the strengths and limitations of a low-resolution version of Flexible Global Ocean Atmosphere-Land-Sea-ice (FGOALS-gl) to simulate the climate of the last millennium, the energy balance, climate sensitivity and absorption feedback of the model are analyzed. Simulation of last-millennium climate was carried out by driving the model with natural (solar radiation and volcanic eruptions) and anthropogenic (greenhouse gases and aerosols) forcing agents. The model feedback factors for (model sensitivity to) different forcings were calculated. The results show that the system feedback factor is about 2.5 (W m-2) K-1 in the pre-industrial period, while 1.9 (W m-2) K-1 in the industrial era. Thus, the model's sensitivity to natural forcing is weak, which explains why it reproduces a weak Medieval Warm Period. The relatively reasonable simulation of the Little Ice Age is caused by both the specified radiative forcing and unforced linear cold drift. The model sensitivity in the industrial era is higher than that of the pre-industrial period. A negative net cloud radiative feedback operates during whole-millennial simulation and reduces the model's sensitivity to specified forcing. The negative net cloud radiative forcing feedback under natural forcing in the period prior to 1850 is due to the underestimation (overestimation) of the response of cloudiness (in-cloud water path). In the industrial era, the strong tropospheric temperature response enlarges the effective radius of ice clouds and reduces the fractional ice content within cloud, resulting in a weak negative net cloud feedback in the industrial period. The water vapor feedback in the industrial era is also stronger than that in the pre-industrial period. Both are in favor of higher model sensitivity and thus a reasonable simulation of the 20th century global warming.展开更多
基金The National Natural Science Foundation of China under contract No. 41675070the Shanghai Eastern Scholar Program under contract No. TP2015049+1 种基金the Expert Development Fund under contract No. 2017033the China Scholarship Council under contract No. 201506330007.
文摘Climate feedbacks have been usually estimated using changes in radiative effects associated with increased global-mean surface temperature. Feedback uncertainties, however, are not only functions of global-mean surface temperature increase. In projections by global climate models, it has been demonstrated that the geographical variation of sea surface temperature change brings significant uncertainties into atmospheric circulation and precipitation responses at regional scales. Here we show that the spatial pattern of surface warming is a major contributor to uncertainty in the combined water vapour-lapse rate feedback. This is demonstrated by computing the global-mean radiative effects of changes in air temperature and relative humidity simulated by 31 climate models using a methodology based on radiative kernels. Our results highlight the important contribution of regional climate change to the uncertainty in climate feedbacks, and identify the regions of the world where constraining surface warming patterns would be most effective for higher skill of climate projections.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(No.2019QZKK0102)the National Natural Science Foundation of China(No.42176026)supported by the National Postdoctoral Program of Innovative Talents(No.BX2021324).
文摘The seasonal phase-locking feature of the Indian Ocean Dipole(IOD)is well documented.However,the seasonality ten-dency of sea surface temperature anomalies(SSTAs)during the development of the IOD has not been widely investigated.The SSTA tendencies over the two centers of the IOD peak in September-October-November are of different monthly amplitudes.The SSTA tendency over the west pole is small before June-July-August but dramatically increases in July-August-September.Meanwhile,the SSTA tendency over the east pole gradually increases before June-July-August and decreases since then.The growth rate attribution of the SSTAs is achieved by examining the roles of radiative and non-radiative air-sea coupled thermodynamic processes through the climate feedback-response analysis method(CFRAM).The CFRAM results indicate that oceanic dynamic processes largely contribute to the total SSTA tendency for initiating and fueling the IOD SSTAs,similar to previous studies.However,these results cannot ex-plain the monthly amplitudes of SSTA tendency.Four negative feedback processes(cloud radiative feedback,atmospheric dynamic processes,surface sensible,and latent heat flux)together play a damping role opposite to the SSTA tendency.Nevertheless,the sea surface temperature-water vapor feedback shows positive feedback.Specifically,variations in SSTAs can change water vapor con-centrations through evaporation,resulting in anomalous longwave radiation that amplifies the initial SSTAs through positive feedback.The effect of water vapor feedback is well in-phase with the monthly amplitudes of SSTA tendency,suggesting that the water vapor feedback might modulate the seasonally dependent SSTA tendency during the development of the IOD.
基金jointly supported by the"Strategic Priority Research Program-Climate Change:Carbon Budget and Related Is-sues"of the Chinese Academy of Sciences(Grant No.XDA05110301)NSFC under Grant Nos.40890054 and 41125017
文摘To understand the strengths and limitations of a low-resolution version of Flexible Global Ocean Atmosphere-Land-Sea-ice (FGOALS-gl) to simulate the climate of the last millennium, the energy balance, climate sensitivity and absorption feedback of the model are analyzed. Simulation of last-millennium climate was carried out by driving the model with natural (solar radiation and volcanic eruptions) and anthropogenic (greenhouse gases and aerosols) forcing agents. The model feedback factors for (model sensitivity to) different forcings were calculated. The results show that the system feedback factor is about 2.5 (W m-2) K-1 in the pre-industrial period, while 1.9 (W m-2) K-1 in the industrial era. Thus, the model's sensitivity to natural forcing is weak, which explains why it reproduces a weak Medieval Warm Period. The relatively reasonable simulation of the Little Ice Age is caused by both the specified radiative forcing and unforced linear cold drift. The model sensitivity in the industrial era is higher than that of the pre-industrial period. A negative net cloud radiative feedback operates during whole-millennial simulation and reduces the model's sensitivity to specified forcing. The negative net cloud radiative forcing feedback under natural forcing in the period prior to 1850 is due to the underestimation (overestimation) of the response of cloudiness (in-cloud water path). In the industrial era, the strong tropospheric temperature response enlarges the effective radius of ice clouds and reduces the fractional ice content within cloud, resulting in a weak negative net cloud feedback in the industrial period. The water vapor feedback in the industrial era is also stronger than that in the pre-industrial period. Both are in favor of higher model sensitivity and thus a reasonable simulation of the 20th century global warming.