This paper pnesents a third gneration shallow Whter disode spedtal wave nbotal medeIYE-WAM based on the spedtal action balance equation. The mode accounts for all edevan effectsof currents on waves, incuding tmpotally...This paper pnesents a third gneration shallow Whter disode spedtal wave nbotal medeIYE-WAM based on the spedtal action balance equation. The mode accounts for all edevan effectsof currents on waves, incuding tmpotally and spatialy varying depth and current inded refraction,sttalning and fequency shift and also explidtly takeS into aanunt all source terms, speclally adePth-limited breaking dheipation. In addition, an energy forcing scheme is propond and applied to themode’s open boundaries to areUn for the propagution of sedIs into the study spstem The upwinddiffeIenng scheme and a standard hybrid diffdrencing scheme for the propagaion terrn and a simpleEuler method for the source teme are employed.展开更多
The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave ener...The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced, with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.展开更多
A vertical 2-D numerical model is presented for simulating the interaction between water waves and a soft mud bed. Taking into account nonlinear rheology, a semi-empirical rheological model is applied to this water-mu...A vertical 2-D numerical model is presented for simulating the interaction between water waves and a soft mud bed. Taking into account nonlinear rheology, a semi-empirical rheological model is applied to this water-mud model, reflecting the combined visco-elasto-plastic properties of soft mud under such oscillatory external forces as water waves. In order to increase the resolution of the flow in the neighborhood of both sides of the inter-surface, a logarithmic grid in the vertical direction is employed for numerical treatment. Model verifications are given through comparisons between the calculated and the measured mud mass transport velocities as well as wave height changes.展开更多
The existing numerical models for nearshore waves are briefly introduced, and the third-generation numerical model for shallow water wave, which makes use of the most advanced productions of wave research and has been...The existing numerical models for nearshore waves are briefly introduced, and the third-generation numerical model for shallow water wave, which makes use of the most advanced productions of wave research and has been adapted well to be used in the environment of seacoast, lake and estuary area, is particularly discussed. The applied model realizes the significant wave height distribution at different wind directions. To integrate the model into the coastal area sediment, sudden deposition mechanism, the distribution of average silt content and the change of sediment sudden deposition thickness over time in the nearshore area are simulated. The academic productions can give some theoretical guidance to the applications of sediment sudden deposition mechanism for stormy waves in the coastal area. And the advancing directions of sediment sudden deposition model are prospected.展开更多
The processes of tsunami evolution during its generation in search for possible amplification mechanisms resulting from unilateral spreading of the sea floor uplift is investigated. We study the nature of the tsunami ...The processes of tsunami evolution during its generation in search for possible amplification mechanisms resulting from unilateral spreading of the sea floor uplift is investigated. We study the nature of the tsunami build up and propagation during and after realistic curvilinear source models represented by a slowly uplift faulting and a spreading slip-fault model. The models are used to study the tsunami amplitude amplification as a function of the spreading velocity and rise time. Tsunami waveforms within the frame of the linearized shallow water theory for constant water depth are analyzed analytically by transform methods (Laplace in time and Fourier in space) for the movable source models. We analyzed the normalized peak amplitude as a function of the propagated uplift length, width and the average depth of the ocean along the propagation path.展开更多
Based on relationships between cloud microphysical and optical properties, three different parameterization schemes for narrow and broad band optical properties in longwave region for water clouds have been presented....Based on relationships between cloud microphysical and optical properties, three different parameterization schemes for narrow and broad band optical properties in longwave region for water clouds have been presented. The effects of different parameterization schemes and different number of broad bands used on cloud radiative properties have been investigated. The effect of scattering role of cloud drops on longwave radiation fluxes and cooling rates in cloudy atmospheres has also been analyzed.展开更多
Based on the 1st order cnoidal wave theory, the wave diffraction around the pier group inshallow water is studied in this paper. The formulas for calculating the nonlinear wave forces are also presented here. In order...Based on the 1st order cnoidal wave theory, the wave diffraction around the pier group inshallow water is studied in this paper. The formulas for calculating the nonlinear wave forces are also presented here. In order to verify the theoretical results, model tests are conducted in the wave flume in The State Key Laboratory of Coastal and Offshore Engineering located in Dalian University of Technology. The range of the wave parameters in the experiments is characteristic wave period T g/d^(1/2) = 8.08- 22.86, characteristic wave height H/ d= 0.1 ~ 0.45. The results obtained from the experiments agree with the theoretical results quite well. It is shown that, in shallow water the nonlinear wave forces acting on a pier group are greater than those calculated by linear wave theory, the value of increment in wave force increases with the increases of the nonlinearity of the wave. In the wave range studied in this paper, the nonlinear wave force can reach over 4 times the force calculatecd by linear wave theory. Thus, it is suggested that, when Tg / d^(1/2)> 8, the wave force on the piers in the pier group in shallow water should be calculated by using the cnoidal wave theory.展开更多
In this paper, the water waves and wave-induced longshore currents in Obak6y coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic ...In this paper, the water waves and wave-induced longshore currents in Obak6y coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave proDaRated to a coastal zone from different directions.展开更多
This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new wa...This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.展开更多
This paper describes the design of a permeable caisson breakwater with slanting slabs (Types I and II) and presents some preliminary experimental results, together with relevant figures and tables. Analysis is made of...This paper describes the design of a permeable caisson breakwater with slanting slabs (Types I and II) and presents some preliminary experimental results, together with relevant figures and tables. Analysis is made of the reflection coefficient, transmission coefficient, acting wave pressures, water jetting at the crest of the breakwater, and wave overtopping. Experiments show conclusively that this type of breakwater has the advantages of light dead weight, good wave-absorbing performance, low coefficients of reflection and transmission, and small wave overtopping.展开更多
This work considers the problems of numerical simulation of non-linear surface gravity waves transformation under shallow bay conditions. The discrete model is built from non-linear shallow-water equations. Are result...This work considers the problems of numerical simulation of non-linear surface gravity waves transformation under shallow bay conditions. The discrete model is built from non-linear shallow-water equations. Are resulted boundary and initial conditions. The method of splitting into physical processes receives system from three equations. Then we define the approximation order and investigate stability conditions of the discrete model. The sweep method was used to calculate the system of equations. This work presents surface gravity wave profiles for different propagation phases.展开更多
In the paper, a weak coupling numerical model is developed for the study of the nonlinear dynamic interaction between water waves and permeable sandy seabed. The wave field solveris based on the VOF (Volume of Fluid...In the paper, a weak coupling numerical model is developed for the study of the nonlinear dynamic interaction between water waves and permeable sandy seabed. The wave field solveris based on the VOF (Volume of Fluid) method for continuity equation and the two-dimensional Reynolds Averaged Navier Stokes (RANS) equations with a k-ε closure. The free surface of cnoidal wave is traced through the PLIC-VOF (P/ecewise Linear/nterface Construction). Blot's equations have been applied to solve the sandy seabed, and the u-p fmite dement formulations are derived by the application of the Galerkin weighted-residual procedure. The continuity of the pressure on the interface between fluid and porous medium domains is considered. Laboratory tests were performed to verify the proposed numerical model, and it is shown that the pore-water pressures and the wave heights computed by the VOF-FEM models are in good agreement with the experimental results. It is found that the proposed model is effective in predicting the seabed-nonlinear wave interaction and is able to handle the wave-breakwater-seabed interaction problem.展开更多
Since the wind wave model Simulating Waves Nearshore (SWAN) cannot effectively simulate the wave fields near the lateral boundaries, the change characteristics and the distortion ranges of calculated wave factors in...Since the wind wave model Simulating Waves Nearshore (SWAN) cannot effectively simulate the wave fields near the lateral boundaries, the change characteristics and the distortion ranges of calculated wave factors including wave heights, periods, directions, and lengths near the lateral boundaries of calculation domain are carefully studied in the case of different water depths and wind speeds respectively. The calculation results show that the effects of the variety of water depth and wind speed on the modeled different wave factors near the lateral boundaries are different. In the case of a certain wind speed, the greater the water depth is, the greater the distortion range is. In the case of a certain water depth, the distortion ranges defined by the relative errors of wave heights, periods, and lengths are different from those defined by the absolute errors of the corresponding wave factors. Moreover, the distortion ranges defined by the relative errors decrease with the increase of wind speed; whereas the distortion ranges defined by the absolute errors change a little with the variety of wind speed. The distortion range of wave direction decreases with the increase of wind speed. The calculated wave factors near the lateral boundaries with the SWAN model in the actual physical areas, such as Lake Taihu and Lake Dianshan considered in this study, are indeed distorted if the calculation domains are not enlarged on the basis of actual physical areas. Therefore, when SWAN is employed to calculate the wind wave fields near the shorelines of sea or inland lakes, the appropriate approaches must be adopted to reduce the calculation errors.展开更多
Semi-implicit algorithms are popularly used to deal with the gravitational term in numerical models. In this paper, we adopt the method of characteristics to compute the solutions for gravity waves on a sphere directl...Semi-implicit algorithms are popularly used to deal with the gravitational term in numerical models. In this paper, we adopt the method of characteristics to compute the solutions for gravity waves on a sphere directly using a semi-Lagrangian advection scheme instead of the semi-implicit method in a shallow water model, to avoid expensive matrix inversions. Adoption of the semi-Lagrangian scheme renders the numerical model always stable for any Courant number, and which saves CPU time. To illustrate the effciency of the characteristic constrained interpolation profile (CIP) method, some numerical results are shown for idealized test cases on a sphere in the Yin-Yang grid system.展开更多
In urban flood modeling,so-called porosity shallow water equations(PSWEs),which conceptually account for unresolved structures, e.g.,buildings, are a promising approach to addressing high CPU times associated with sta...In urban flood modeling,so-called porosity shallow water equations(PSWEs),which conceptually account for unresolved structures, e.g.,buildings, are a promising approach to addressing high CPU times associated with state-of-the-art explicit numerical methods. The PSWE can be formulated with a single porosity term, referred to as the single porosity shallow water model(SP model), which accounts for both the reduced storage in the cell and the reduced conveyance, or with two porosity terms: one accounting for the reduced storage in the cell and another accounting for the reduced conveyance. The latter form is referred to as an integral or anisotropic porosity shallow water model(AP model). The aim of this study was to analyze the differences in wave propagation speeds of the SP model and the AP model and the implications of numerical model results. First, augmented Roe-type solutions were used to assess the influence of the source terms appearing in both models. It is shown that different source terms have different influences on the stability of the models. Second, four computational test cases were presented and the numerical models were compared. It is observed in the eigenvalue-based analysis as well as in the computational test cases that the models converge if the conveyance porosity in the AP model is close to the storage porosity. If the porosity values differ significantly, the AP model yields different wave propagation speeds and numerical fluxes from those of the BP model. In this study, the ratio between the conveyance and storage porosities was determined to be the most significant parameter.展开更多
基金Supported by the National Eighty-Five-Year Project D09920109 and Chinese Academy of Sciences and State Education Commission
文摘This paper pnesents a third gneration shallow Whter disode spedtal wave nbotal medeIYE-WAM based on the spedtal action balance equation. The mode accounts for all edevan effectsof currents on waves, incuding tmpotally and spatialy varying depth and current inded refraction,sttalning and fequency shift and also explidtly takeS into aanunt all source terms, speclally adePth-limited breaking dheipation. In addition, an energy forcing scheme is propond and applied to themode’s open boundaries to areUn for the propagution of sedIs into the study spstem The upwinddiffeIenng scheme and a standard hybrid diffdrencing scheme for the propagaion terrn and a simpleEuler method for the source teme are employed.
基金"333"Project Scientific Research Foundation of Jiangsu ProvinceScience Fundation of Hohai University(3853)
文摘The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced, with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.
文摘A vertical 2-D numerical model is presented for simulating the interaction between water waves and a soft mud bed. Taking into account nonlinear rheology, a semi-empirical rheological model is applied to this water-mud model, reflecting the combined visco-elasto-plastic properties of soft mud under such oscillatory external forces as water waves. In order to increase the resolution of the flow in the neighborhood of both sides of the inter-surface, a logarithmic grid in the vertical direction is employed for numerical treatment. Model verifications are given through comparisons between the calculated and the measured mud mass transport velocities as well as wave height changes.
文摘The existing numerical models for nearshore waves are briefly introduced, and the third-generation numerical model for shallow water wave, which makes use of the most advanced productions of wave research and has been adapted well to be used in the environment of seacoast, lake and estuary area, is particularly discussed. The applied model realizes the significant wave height distribution at different wind directions. To integrate the model into the coastal area sediment, sudden deposition mechanism, the distribution of average silt content and the change of sediment sudden deposition thickness over time in the nearshore area are simulated. The academic productions can give some theoretical guidance to the applications of sediment sudden deposition mechanism for stormy waves in the coastal area. And the advancing directions of sediment sudden deposition model are prospected.
文摘The processes of tsunami evolution during its generation in search for possible amplification mechanisms resulting from unilateral spreading of the sea floor uplift is investigated. We study the nature of the tsunami build up and propagation during and after realistic curvilinear source models represented by a slowly uplift faulting and a spreading slip-fault model. The models are used to study the tsunami amplitude amplification as a function of the spreading velocity and rise time. Tsunami waveforms within the frame of the linearized shallow water theory for constant water depth are analyzed analytically by transform methods (Laplace in time and Fourier in space) for the movable source models. We analyzed the normalized peak amplitude as a function of the propagated uplift length, width and the average depth of the ocean along the propagation path.
基金This work was supported by National Key Basic Research Development Program (G1999043400) and the National Natural Science Founda
文摘Based on relationships between cloud microphysical and optical properties, three different parameterization schemes for narrow and broad band optical properties in longwave region for water clouds have been presented. The effects of different parameterization schemes and different number of broad bands used on cloud radiative properties have been investigated. The effect of scattering role of cloud drops on longwave radiation fluxes and cooling rates in cloudy atmospheres has also been analyzed.
文摘Based on the 1st order cnoidal wave theory, the wave diffraction around the pier group inshallow water is studied in this paper. The formulas for calculating the nonlinear wave forces are also presented here. In order to verify the theoretical results, model tests are conducted in the wave flume in The State Key Laboratory of Coastal and Offshore Engineering located in Dalian University of Technology. The range of the wave parameters in the experiments is characteristic wave period T g/d^(1/2) = 8.08- 22.86, characteristic wave height H/ d= 0.1 ~ 0.45. The results obtained from the experiments agree with the theoretical results quite well. It is shown that, in shallow water the nonlinear wave forces acting on a pier group are greater than those calculated by linear wave theory, the value of increment in wave force increases with the increases of the nonlinearity of the wave. In the wave range studied in this paper, the nonlinear wave force can reach over 4 times the force calculatecd by linear wave theory. Thus, it is suggested that, when Tg / d^(1/2)> 8, the wave force on the piers in the pier group in shallow water should be calculated by using the cnoidal wave theory.
基金The National Basic Research Program of China under contract No.2013CB430403the National Natural Science Foundation of China under contract No.51179025+1 种基金the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering under contract No.2013491511the Open Foundation of State Key Laboratory of Ocean Engineering under contract No.1305
文摘In this paper, the water waves and wave-induced longshore currents in Obak6y coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave proDaRated to a coastal zone from different directions.
文摘This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.
文摘This paper describes the design of a permeable caisson breakwater with slanting slabs (Types I and II) and presents some preliminary experimental results, together with relevant figures and tables. Analysis is made of the reflection coefficient, transmission coefficient, acting wave pressures, water jetting at the crest of the breakwater, and wave overtopping. Experiments show conclusively that this type of breakwater has the advantages of light dead weight, good wave-absorbing performance, low coefficients of reflection and transmission, and small wave overtopping.
文摘This work considers the problems of numerical simulation of non-linear surface gravity waves transformation under shallow bay conditions. The discrete model is built from non-linear shallow-water equations. Are resulted boundary and initial conditions. The method of splitting into physical processes receives system from three equations. Then we define the approximation order and investigate stability conditions of the discrete model. The sweep method was used to calculate the system of equations. This work presents surface gravity wave profiles for different propagation phases.
基金The study was financially supported by the National Natural Science Foundation of China(Grant Nos.10202003 and 50479015)Program for New Century Excellent Talents in University(NCET-05-0710)
文摘In the paper, a weak coupling numerical model is developed for the study of the nonlinear dynamic interaction between water waves and permeable sandy seabed. The wave field solveris based on the VOF (Volume of Fluid) method for continuity equation and the two-dimensional Reynolds Averaged Navier Stokes (RANS) equations with a k-ε closure. The free surface of cnoidal wave is traced through the PLIC-VOF (P/ecewise Linear/nterface Construction). Blot's equations have been applied to solve the sandy seabed, and the u-p fmite dement formulations are derived by the application of the Galerkin weighted-residual procedure. The continuity of the pressure on the interface between fluid and porous medium domains is considered. Laboratory tests were performed to verify the proposed numerical model, and it is shown that the pore-water pressures and the wave heights computed by the VOF-FEM models are in good agreement with the experimental results. It is found that the proposed model is effective in predicting the seabed-nonlinear wave interaction and is able to handle the wave-breakwater-seabed interaction problem.
基金The National Natural Science Foundation of China under contract No.51079082the Natural Science Foundation of Shanghai City under contract No.14ZR1419600+1 种基金the Research Innovation Projects of 2013 Shanghai Postgraduate under contract No.20131129the Top Discipline Project of Shanghai Municipal Education Commission
文摘Since the wind wave model Simulating Waves Nearshore (SWAN) cannot effectively simulate the wave fields near the lateral boundaries, the change characteristics and the distortion ranges of calculated wave factors including wave heights, periods, directions, and lengths near the lateral boundaries of calculation domain are carefully studied in the case of different water depths and wind speeds respectively. The calculation results show that the effects of the variety of water depth and wind speed on the modeled different wave factors near the lateral boundaries are different. In the case of a certain wind speed, the greater the water depth is, the greater the distortion range is. In the case of a certain water depth, the distortion ranges defined by the relative errors of wave heights, periods, and lengths are different from those defined by the absolute errors of the corresponding wave factors. Moreover, the distortion ranges defined by the relative errors decrease with the increase of wind speed; whereas the distortion ranges defined by the absolute errors change a little with the variety of wind speed. The distortion range of wave direction decreases with the increase of wind speed. The calculated wave factors near the lateral boundaries with the SWAN model in the actual physical areas, such as Lake Taihu and Lake Dianshan considered in this study, are indeed distorted if the calculation domains are not enlarged on the basis of actual physical areas. Therefore, when SWAN is employed to calculate the wind wave fields near the shorelines of sea or inland lakes, the appropriate approaches must be adopted to reduce the calculation errors.
基金supported by National Natural Science Foundation of China (NSFC) projects (Grant Nos. 40875065 and 40805045)the research projects 2008R001 at Chinese Academy of Meteorological Sciences (CAMS) and 2008 LASWZI05 at the State Key Laboratory of Severe Weather, CAMS
文摘Semi-implicit algorithms are popularly used to deal with the gravitational term in numerical models. In this paper, we adopt the method of characteristics to compute the solutions for gravity waves on a sphere directly using a semi-Lagrangian advection scheme instead of the semi-implicit method in a shallow water model, to avoid expensive matrix inversions. Adoption of the semi-Lagrangian scheme renders the numerical model always stable for any Courant number, and which saves CPU time. To illustrate the effciency of the characteristic constrained interpolation profile (CIP) method, some numerical results are shown for idealized test cases on a sphere in the Yin-Yang grid system.
文摘In urban flood modeling,so-called porosity shallow water equations(PSWEs),which conceptually account for unresolved structures, e.g.,buildings, are a promising approach to addressing high CPU times associated with state-of-the-art explicit numerical methods. The PSWE can be formulated with a single porosity term, referred to as the single porosity shallow water model(SP model), which accounts for both the reduced storage in the cell and the reduced conveyance, or with two porosity terms: one accounting for the reduced storage in the cell and another accounting for the reduced conveyance. The latter form is referred to as an integral or anisotropic porosity shallow water model(AP model). The aim of this study was to analyze the differences in wave propagation speeds of the SP model and the AP model and the implications of numerical model results. First, augmented Roe-type solutions were used to assess the influence of the source terms appearing in both models. It is shown that different source terms have different influences on the stability of the models. Second, four computational test cases were presented and the numerical models were compared. It is observed in the eigenvalue-based analysis as well as in the computational test cases that the models converge if the conveyance porosity in the AP model is close to the storage porosity. If the porosity values differ significantly, the AP model yields different wave propagation speeds and numerical fluxes from those of the BP model. In this study, the ratio between the conveyance and storage porosities was determined to be the most significant parameter.