Rainfall is a common trigger for landslide reactivation,as it raises groundwater levels and reduces bedrock or soil shear resistance.This study focuses on the Kualiangzi landslide in the southern region of Sichuan Pro...Rainfall is a common trigger for landslide reactivation,as it raises groundwater levels and reduces bedrock or soil shear resistance.This study focuses on the Kualiangzi landslide in the southern region of Sichuan Province,China.Real-time monitoring of groundwater levels and rainfall from July 2013 to September 2016 is analyzed.Groundwater table increments,considering groundwater drainage rate,were calculated using the water-table fluctuation and master recession curve method and the response time of the groundwater table to rainfall events was estimated using the cross-correlation function.Results reveal that groundwater level declines from tension troughs to landslide fronts in the rainy season,with a significant positive correlation between the groundwater level in the tension trough and landslide surface displacement.Evaluated spring elevations for groundwater discharge range from 410 m to 440 m,which is in agreement with the actual spring elevations(390-423 m).Lag times of groundwater response to rainfall decreases with cumulative rainfall of the rainy periods.In the middle part of the landslide,two responses between rainfall and groundwater levels indicate two water movement pathways:Vertical cracks or fractures resulting from the slow landslide movement,and matrix pore space in unconsolidated sediment.Variations in peak values of the cross-correlation function suggest early dominance of the uniform matrix flow and later dominance of preferential flow during the rainy period.展开更多
In worldwide, the most common triggering factor of rock landslides is extended and intense rainfall. However, different from the soil slope failure caused by softening action of infiltration rainwater, the mechanism o...In worldwide, the most common triggering factor of rock landslides is extended and intense rainfall. However, different from the soil slope failure caused by softening action of infiltration rainwater, the mechanism of rock landslide in rainfall is not clear. From the view of fracture mechanics, the propagation of cracks on rock slope and the development of sliding surface were researched. Then based on hydraulics formulas and using Sweden arc method, the influence of crack water on stability of rock slope was quantitatively studied. Finally, an example was given to check the theoretical approach. The result shows that the development of sliding surface of rock slope is mainly caused by crack propagation under hydrostatic pressure when the stress intensity factor KI at crack tip is bigger than the toughness index of rock fractures Klc, and the failure of slope is the result of hydraulic action of crack water and the softening of materials on sliding surface when the depth of crack water is bigger than a minimum value hmin.展开更多
Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and qu...Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.展开更多
Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorge...Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well.展开更多
Frequent soil landslide events are recorded in the Three Gorges Reservoir area,China,making it necessary to investigate the failure mode of such riverside landslides.Geotechnical centrifugal test is considered to be t...Frequent soil landslide events are recorded in the Three Gorges Reservoir area,China,making it necessary to investigate the failure mode of such riverside landslides.Geotechnical centrifugal test is considered to be the most realistic laboratory model,which can reconstruct the required geo-stress.In this study,the Liangshuijing landslide in the Three Gorgers Reservoir area is selected for a scaled centrifugal model experiment,and a water pump system is employed to retain the rainfall condition.Using the techniques of digital photography and pore water pressure transducers,water level fluctuation is controlled,and multi-physical data are thus obtained,including the pore water pressure,earth pressure,surface displacement and deep displacement.The analysis results indicate that:Three stages were set in the test(waterflooding stage,rainfall stage and drainage stage).Seven transverse cracks with wide of 1–5 mm appeared during the model test,of which 3 cracks at the toe landslide were caused by reservoir water fluctuation,and the cracks at the middle and rear part were caused by rainfall.During rainfall process,the maximum displacement of landslide model reaches 3 cm.And the maximum deformation of the model exceeds 12 cm at the drainage stage.The failure process of the slope model can be divided into four stages:microcracks appearance and propagation stage,thrust-type failure stage,retrogressive failure stage,and holistic failure stage.When the thrust-type zone caused by rainfall was connected or even overlapped with the retrogressive failure zone caused by the drainage,the landslide would start,which displayed a typical composite failure pattern.The failure mode and deformation mechanism under the coupling actions of water level fluctuation and rainfall are revealed in the model test,which could appropriately guide for the analysis and evaluation of riverside landslides.展开更多
Abundant landslide deposits were triggered by the Wenchuan earthquake, providing a rich source of material for subsequent debris flows or slope failures under rainfall conditions. A good understanding of the physical ...Abundant landslide deposits were triggered by the Wenchuan earthquake, providing a rich source of material for subsequent debris flows or slope failures under rainfall conditions. A good understanding of the physical and mechanical properties of the landslide deposits is very important to the research on slope failure mechanisms and the initiation of debris flow. Laboratory biaxial compression tests are used to study the material compositions and water content impacts on the mechanical properties of landslide deposits, and a discrete element method (a bond-contact model) is used to study the particle stiffness, bond force, friction coefficient and confining stress impact on the mechanical behaviors and the relationships between the numerical and experimental parameters. The experimental results show that the failure stress of landslide deposits is decreased with increasing content of fine particles and also with increased water content, especially at the initial increasing stage. Cohesion of the saturated landslide deposits is increased, but the friction angle is decreased with the increase in the fine particle content. Shear strength parameters (the cohesion and friction angle) are decreased with the increasing water content at the initial increasing stage, and then, they slowly decrease. There is a critical value of the water content at 5%-7% (in weight) for the failure stress and shear strength parameters of the landslide deposits. Quadratic equations are presented to describe the relation between the bond force and cohesion, and the numerical friction coefficient and the experimental friction angle.展开更多
Water resource management programs designed to control nuisance algal infestations have historically been dominated by reactive approaches. With increased regulatory scrutiny regarding algaecide use, data regarding ef...Water resource management programs designed to control nuisance algal infestations have historically been dominated by reactive approaches. With increased regulatory scrutiny regarding algaecide use, data regarding efficacy of integrated management approaches are needed. This research outlines an efficient method of comparing management programs based upon exceeding designated algae action threshold levels (AATL) in pond systems. Phosphorus mitigating technologies were specifically evaluated as phosphorus had been indicated in supporting many nuisance algal types/densities. The objectives of this research were to evaluate pond management programs in terms of action thresholds exceeded, number of reactive algaecide treatments and algaecide amount required to maintain ponds below AATL. This research compared management programs consisting of: 1) Copper sulfate;2) SeClear Algaecide and Water Quality Enhancer;and 3) Phoslock phosphorus binding technology plus SeClear (as needed). Water and algae samples were analyzed every two weeks over two growing seasons on replicated research ponds and compared with designated AATL parameters. If an AATL was exceeded, then a reactive algaecide treatment was implemented for the corresponding water body. Ponds managed by copper sulfate alone exceeded a greater amount of AATL and required a significantly greater (P < 0.05) amount of reactive algaecide treatments to maintain control (average 6.5 annually) whereas SeClear and Phoslock plus ponds required 4.3 and 1.8 treatments, respectively. The average amount of copper applied to maintain ponds below AATL was 1414 g with copper sulfate whereas copper amendments were significantly decreased with SeClear (830 g) and even further with Phoslock plus management programs (342 g). Additionally, management programs incorporating nutrient mitigation required fewer treatments and less copper in year two of the program. This research provides valuable information for water resource managers to evaluate integrated approaches to water resource management in terms of social, economic, operational and regulatory viewpoints.展开更多
Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in induci...Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in inducing loess landslides.This study focuses on three neighboring cities sequentially situated on the Loess Plateau along the direction of aeolian deposition of loess,namely Lanzhou,Dingxi,and Tianshui,which are densely populated and prone to landslide disasters.The variations in hydraulic properties,including water retention capacity and permeability,are investigated through Soil Water Characteristic Curve(SWCC)test and hydraulic conductivity test.The experimental findings revealed that Tianshui loess exhibited the highest water retention capacity,followed by Dingxi loess,while Lanzhou loess demonstrated the lowest water retention capacity.Contrastingly,the results for the saturated permeability coefficient were found to be the opposite:Tianshui loess showed the lowest permeability,whereas Lanzhou loess displayed the highest permeability.These results are supported and analyzed by scanning electron microscopy(SEM)observation.In addition,the water retention capacity is mathematically expressed using the van Genuchten model and extended to predict unsaturated hydraulic properties of loess.The experimental results exhibit a strong accordance with one another and align with the regional distribution patterns of disasters.展开更多
Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In thi...Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In this study,a series of laboratory model experiments were carried out on the migration of oil leakage under freeze-thaw action,and the distributions of the soil temperature,unfrozen water content,and displacement were analyzed.The results showed that under freeze-thaw action,liquid water in soils migrated to the freezing front and accumulated.After the pipe cracked,oil pollutants first gathered at one side of the leak hole,and then moved around.The pipe wall temperature affected the soil temperature field,and the thermal influence range below and transverse the pipe wall(35–40 cm)was larger than that above the pipe wall(8 cm)owing to the soil surface temperature.The leaked oil's temperature would make the temperature of the surrounding soil rise.Oil would inhibit the cooling of the soils.Besides,oil migration was significantly affected by the gravity and water flow patterns.The freeze-thaw action would affect the migration of the oil,which was mainly manifested as inhibiting the diffusion and movement of oil when soils were frozen.Unfrozen water transport caused by freeze-thaw cycles would also inhibit oil migration.The research results would provide a scientific reference for understanding the relationship between the movement of oil pollutants,water,and soil temperature,and for establishing a waterheat-mass transport model in frozen soils.展开更多
Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbaniz...Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbanized slope regions, especially those considered high-risk areas. Various other factors contribute to the process;thus, it is essential to analyze the causes of such incidents in all possible ways. Soil moisture plays a critical role in the Earth’s surface-atmosphere interaction systems;hence, measurements and their estimations are crucial for understanding all processes involved in the water balance, especially those related to landslides. Soil moisture can be estimated from in-situ measurements using different sensors and techniques, satellite remote sensing, hydrological modeling, and indicators to index moisture conditions. Antecedent soil moisture can significantly impact runoff for the same rainfall event in a watershed. The Antecedent Precipitation Index (API) or “retained rainfall,” along with the antecedent moisture condition from the Natural Resources Conservation Service, is generally applied to estimate runoff in watersheds where data is limited or unavailable. This work aims to explore API in estimating soil moisture and establish thresholds based on landslide occurrences. The estimated soil moisture will be compared and calibrated using measurements obtained through multisensor capacitance probes installed in a high-risk area located in the mountainous region of Campos do Jordão municipality, São Paulo, Brazil. The API used in the calculation has been modified, where the recession coefficient depends on air temperature variability as well as the climatological mean temperature, which can be considered as losses in the water balance due to evapotranspiration. Once the API is calibrated, it will be used to extrapolate to the entire watershed and consequently estimate soil moisture. By utilizing recorded mass movements and comparing them with API and soil moisture, it will be possible to determine thresholds, thus enabling anticipation of landslide occurrences.展开更多
After the impoundment of the Three Gorges Reservoir,some huge ancient landslides were reactivated and deformed,showing typical hydrodynamic pressure landslide characteristics.The Baishuihe landslide was a typical hydr...After the impoundment of the Three Gorges Reservoir,some huge ancient landslides were reactivated and deformed,showing typical hydrodynamic pressure landslide characteristics.The Baishuihe landslide was a typical hydrodynamic pressure landslide.The management department conducted slope cutting treatments from 2018 to 2019.To evaluate the treatment effect of rear slope cutting,this study analyzed the data of the surface deformation survey and field monitoring over the past 20 years and the characteristics of the reservoir water-triggered Baishuihe landslide deformation,and calculated the seepage field,displacement field,and stability coefficient before and after landslide treatment.The results showed that the deformation of the Baishuihe landslide was primarily related to a decrease in the reservoir water level.Owing to the poor permeability of the landslide soil,the decrease in the reservoir water level produced a seepage force pointing to the outside of the landslide body,leading to the step deformation of the landslide displacement.The landslide was treated by rear slope cutting,and the“step”deformation of the landslide disappeared after treatment.The hydrodynamic pressure caused by the change in reservoir water after cutting the slope did not disappear.However,as the slope cutting greatly reduced the overall sliding force of the landslide,its stability was greatly improved.Notably,high stability can still be ensured under extreme rainfall after treatment.Slope cutting is effective for treating hydrodynamic pressure landslides.This study can provide effective technical support for the treatment of reservoir landslides.展开更多
Landslide term is used for all mass movements on slopes, including falling, overturns and flow debris. Using the potential landslide hazard zonation, areas with high potential of landslide hazard can be detected and s...Landslide term is used for all mass movements on slopes, including falling, overturns and flow debris. Using the potential landslide hazard zonation, areas with high potential of landslide hazard can be detected and so prevent the landslide occurrence with providing appropriate solutions. In this study, the landslide hazard zonation along the water transmission lines of the Amir-Almomenin (AS) water supply complex has been done. Studied area is located at the western part of the Northern Khorasan (Bojnord). Study procedure includes the general geology survey, recognition of the most important effective parameters on the landslide phenomena (such as slope, lithology, faults and streams) and has been evaluated as basic maps. Then, each layer was validated based on the importance of the effective factors using the maps weighting method in ArcGis software. Finally, the studied area was zoned based on the landslide potential using the overlapping of the various layers. Final zonation map shows that the North, Northwestern and Median parts of the studied area have the highest landslide potential. These areas are included of Marl and red Marl and to some extend loss deposits with slopes between 14 to more of 50 degrees. Seemingly, faults (due to low occurrence) and streams (due to drought) have lower effect on the landslide potential. However, the degree of the slope and type of lithology are the most important parameters on the landslide potential, respectively.展开更多
The water shortage in the Middle East is a well-known problem. The introduction of diesel operated pumps for irrigation has caused a severe drop in groundwater levels. At the same time the demand for groundwater is gr...The water shortage in the Middle East is a well-known problem. The introduction of diesel operated pumps for irrigation has caused a severe drop in groundwater levels. At the same time the demand for groundwater is growing to alarming proportions. Alternative ways of groundwater supply and management need to be found to halt social and economical disaster in the future. Why not look at history? Qanats are subterranean tunnels ancient civilizations built to access groundwater. The technique is a sustainable method of groundwater extraction. Throughout the Middle East some settlements still make use of these ancient systems. In the summer of 2000, a community rehabilitation of a qanat was executed International Center for Areas (ICARDA) and with support from the Agricultural Research in Dry international donors. The renovation served as a pilot community intervention within a participatory action research project aimed at evaluating the use of qanats in Syria. In a second stage of the project, the pilot was scaled up to a nation-wide survey of Syrian qanats in 2001. This resulted in qanat renovations on other sites executed in 2oo2 and 2oo3 with further international support. This paper compares the first pilot renovation with a recent qanat renovation that took place in Qarah, Syria.展开更多
The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave ener...The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced, with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.展开更多
The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea...The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea level (ASL), and annual reservoir regulation has caused a 30-m water level difference after impoundment of the TGR since September 2008. This paper first presents the spatiotemporal distribution of landslides in six periods of 175 m ASL trial impoundments from 2008 to 2014. The results show that the number of landslides sharply decreased from 273 at the initial stage to less than ten at the second stage of impoundment. Based on this, the reservoir-induced landslides in the TGR region can be roughly classified into five failure patterns, i.e. accumulation landslide, dip-slope landslide, reversed bedding landslide, rockfall, and karst breccia landslide. The accumulation landslides and dip-slope landslides account for more than 90%. Taking the Shuping accumulation landslide (a sliding mass volume of 20.7 × 106 m^3) in Zigui County and the Outang dip-slope landslide (a sliding mass volume of about 90 × 106 m^3) in Fengjie County as two typical cases, the mechanisms of reactivation of the two landslides are analyzed. The monitoring data and factor of safety (FOS) calculation show that the accumulation landslide is dominated by water level variation in the reservoir as most part of the mass body is under 175 m ASL, and the dip-slope landslide is controlled by the coupling effect of reservoir water level variation and precipitation as an extensive recharge area of rainfall from the rear and the front mass is below 175 m ASL. The characteristics of landslide-induced impulsive wave hazards after and before reservoir impoundment are studied, and the probability of occurrence of a landslide-induced impulsive wave hazard has increased in the reservoir region. Simulation results of the Ganjingzi landslide in Wushan County indicate the strong relationship between landslide-induced surge and water variation with high potential risk to shipping and residential areas. Regarding reservoir regulation in TGR when using a single index, i.e. 1-d water level variation, water resources are not well utilized, and there is also potential risk of disasters since 2008. In addition, various indices such as 1-d, 5-d, and 10-d water level variations are proposed for reservoir regulation. Finally, taking reservoir-induced landslides in June 2015 for example, the feasibility of the optimizing indices of water level variations is verified.展开更多
Landslide is a common geological hazard in reservoir areas and may cause great damage to local residents’life and property.It is widely accepted that rainfall and periodic variation of water level are the two main fa...Landslide is a common geological hazard in reservoir areas and may cause great damage to local residents’life and property.It is widely accepted that rainfall and periodic variation of water level are the two main factors triggering reservoir landslides.In this study,the Bazimen landslide located in the Three Gorges Reservoir(TGR)was back-analyzed as a case study.Based on the statistical features of the last 3-year monitored data and field instrumentations,the landslide susceptibility in an annual cycle and four representative periods was investigated via the deterministic and probabilistic analysis,respectively.The results indicate that the fluctuation of the reservoir water level plays a pivotal role in inducing slope failures,for the minimum stability coefficient occurs at the rapid decline period of water level.The probabilistic analysis results reveal that the initial sliding surface is the most important area influencing the occurrence of landslide,compared with other parts in the landslide.The seepage calculations from probabilistic analysis imply that rainfall is a relatively inferior factor affecting slope stability.This study aims to provide preliminary guidance on risk management and early warning in the TGR area.展开更多
According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and devel...According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.展开更多
A combined survey including infrared thermography(IRT)and field-laboratory tests were conducted to analyze the thermal responses and thermal properties of loess on a landslide-prone loess slope in the Heifangtai terra...A combined survey including infrared thermography(IRT)and field-laboratory tests were conducted to analyze the thermal responses and thermal properties of loess on a landslide-prone loess slope in the Heifangtai terrace in Northwest China aiming at preliminarily demonstrating the potential of IRT as a complementary technique to the investigation of irrigation-induced loess landslides.Multitemporal thermographic surveys corresponding to various solar radiation intensities during the afternoon were carried out on the landslide-prone loess slope.Accordingly,the spatiotemporal distribution of the thermal responses within the observed slope surface was analyzed qualitatively and quantitatively.Meanwhile,field and laboratory investigations were also performed on the thermal properties of different landslide materials.The results indicate that loess,a landslide-prone deposit that usually has a relatively high water content,exhibits different thermal properties and anomalies,including a lower surface temperature and greater thermal inertia,compared to surrounding zones without landslides.The groundwater table and corresponding seepage line could also be obtained by determining the potential boundary between the thermal response distribution of landslide scarps and that of saturated deposits in the presence of landslides.The results of these investigations are expected to provide insight for future endeavors combining infrared thermography with other efficient survey methodologies(e.g.,InSAR,which can monitor the active displacement of a loess slope)to evaluate the activity of this kind of excessive irrigation-induced loess landslide.展开更多
This note analyzes the change in water renewal time characteristics based on res- ervoir action and then establishes calculation models for the water renewal time in the Yellow River mainstream. The results indicate t...This note analyzes the change in water renewal time characteristics based on res- ervoir action and then establishes calculation models for the water renewal time in the Yellow River mainstream. The results indicate that the amount of renewable water with reservoir action can meet the annual water demand and that water flows naturally at the Lijin station near estuary. Initial storage dynamics is an important factor in water resource renewable capacity at a certain time, and rational reservoir action can promote sustainable water re- source utilization. When the initial storages in the Longyang Gorge reservoir are 9,343 and 5.343 billion m3, the water renewal times are 28 and 33.9 d, respectively. Flow stoppage appears in April and May.展开更多
Based onmultiphase flowtheory and capillary mechanics,the dimensionless bond number expression of the influence of string grille wire spacing on droplet spreading is derived.Taking a liquid film formed by spreading dr...Based onmultiphase flowtheory and capillary mechanics,the dimensionless bond number expression of the influence of string grille wire spacing on droplet spreading is derived.Taking a liquid film formed by spreading droplets based on Kelvin correlation,the Young-Laplace equation,and the Hagen-Poiseuille law,an equation for calculating the thickness and height of the liquid film is established with temperature,relative humidity and molar volume of liquid phase as independent variables.According to the theory of string grille filtration and dust removal,a dust removal efficiency calculation model covering the wet string grille wire group is constructed based on the liquid film thickness,height,wire diameter,water film area,and vortex shedding frequency.Finally,a theoretical analysis of the influence of water film area on the efficiency of wet string grille dust removal is carried out based on the spray pressure and the ratio of string grille wire distance to wire diameter.It is found that the effect of spray pressure on water film area and dust removal efficiency is more significant than the string grille wire distance diameter ratio.Moreover,the optimized combination of wet string grille wire distance diameter ratio 0.84,wind speed 3m/s and spray pressure 0.8 MPa is found,which could provide an important reference for engineering applications.展开更多
基金This research is part of the"Survey and warning zonation of huge geological hazards in Southwestern China"project(No.12120113010100)which is supported by the China Geological Survey,and the"Application of electrical resistivity tomography to evaluate the temporal and spatial variation in matric suction of landslide"project(No.41402268)+1 种基金which is supported by the National Natural Science Foundation of Chinathe State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(No.2007DA810083)。
文摘Rainfall is a common trigger for landslide reactivation,as it raises groundwater levels and reduces bedrock or soil shear resistance.This study focuses on the Kualiangzi landslide in the southern region of Sichuan Province,China.Real-time monitoring of groundwater levels and rainfall from July 2013 to September 2016 is analyzed.Groundwater table increments,considering groundwater drainage rate,were calculated using the water-table fluctuation and master recession curve method and the response time of the groundwater table to rainfall events was estimated using the cross-correlation function.Results reveal that groundwater level declines from tension troughs to landslide fronts in the rainy season,with a significant positive correlation between the groundwater level in the tension trough and landslide surface displacement.Evaluated spring elevations for groundwater discharge range from 410 m to 440 m,which is in agreement with the actual spring elevations(390-423 m).Lag times of groundwater response to rainfall decreases with cumulative rainfall of the rainy periods.In the middle part of the landslide,two responses between rainfall and groundwater levels indicate two water movement pathways:Vertical cracks or fractures resulting from the slow landslide movement,and matrix pore space in unconsolidated sediment.Variations in peak values of the cross-correlation function suggest early dominance of the uniform matrix flow and later dominance of preferential flow during the rainy period.
基金Project(2008CB425802) supported by the National Basic Research Program of China Project(40872181) supported by the National Natural Science Foundation of ChinaProject(09R2200200) supported by the West Light Foundation of Chinese Academy of Sciences
文摘In worldwide, the most common triggering factor of rock landslides is extended and intense rainfall. However, different from the soil slope failure caused by softening action of infiltration rainwater, the mechanism of rock landslide in rainfall is not clear. From the view of fracture mechanics, the propagation of cracks on rock slope and the development of sliding surface were researched. Then based on hydraulics formulas and using Sweden arc method, the influence of crack water on stability of rock slope was quantitatively studied. Finally, an example was given to check the theoretical approach. The result shows that the development of sliding surface of rock slope is mainly caused by crack propagation under hydrostatic pressure when the stress intensity factor KI at crack tip is bigger than the toughness index of rock fractures Klc, and the failure of slope is the result of hydraulic action of crack water and the softening of materials on sliding surface when the depth of crack water is bigger than a minimum value hmin.
基金funded by the National Natural Science Foundation of China(No.42372331)the Henan Excellent Youth Science Fund Project(No.242300421145)the Colleges and Universities Youth and Innovation Science and Technology Support Plan of Shandong Province(No.2021KJ024).
文摘Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.
基金funded by the Key Program of National Natural Science Foundation of China (41630643)the National Key Research and Development Program of China (2017YFC1501302)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGCJ1701)
文摘Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41977244, 42007267)the National Key R&D Program of China (Grant No. 2017YFC1501301)
文摘Frequent soil landslide events are recorded in the Three Gorges Reservoir area,China,making it necessary to investigate the failure mode of such riverside landslides.Geotechnical centrifugal test is considered to be the most realistic laboratory model,which can reconstruct the required geo-stress.In this study,the Liangshuijing landslide in the Three Gorgers Reservoir area is selected for a scaled centrifugal model experiment,and a water pump system is employed to retain the rainfall condition.Using the techniques of digital photography and pore water pressure transducers,water level fluctuation is controlled,and multi-physical data are thus obtained,including the pore water pressure,earth pressure,surface displacement and deep displacement.The analysis results indicate that:Three stages were set in the test(waterflooding stage,rainfall stage and drainage stage).Seven transverse cracks with wide of 1–5 mm appeared during the model test,of which 3 cracks at the toe landslide were caused by reservoir water fluctuation,and the cracks at the middle and rear part were caused by rainfall.During rainfall process,the maximum displacement of landslide model reaches 3 cm.And the maximum deformation of the model exceeds 12 cm at the drainage stage.The failure process of the slope model can be divided into four stages:microcracks appearance and propagation stage,thrust-type failure stage,retrogressive failure stage,and holistic failure stage.When the thrust-type zone caused by rainfall was connected or even overlapped with the retrogressive failure zone caused by the drainage,the landslide would start,which displayed a typical composite failure pattern.The failure mode and deformation mechanism under the coupling actions of water level fluctuation and rainfall are revealed in the model test,which could appropriately guide for the analysis and evaluation of riverside landslides.
基金support of the Key Deployment Project of the Chinese Academy of Sciences (KZZD-EW-05-01)the National Natural Science Foundation of China(41472272,41102194)+1 种基金the Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(SKLGP2013K015)the Science Foundation for Excellent Youth Scholars of Sichuan University(2013SCU04A07)
文摘Abundant landslide deposits were triggered by the Wenchuan earthquake, providing a rich source of material for subsequent debris flows or slope failures under rainfall conditions. A good understanding of the physical and mechanical properties of the landslide deposits is very important to the research on slope failure mechanisms and the initiation of debris flow. Laboratory biaxial compression tests are used to study the material compositions and water content impacts on the mechanical properties of landslide deposits, and a discrete element method (a bond-contact model) is used to study the particle stiffness, bond force, friction coefficient and confining stress impact on the mechanical behaviors and the relationships between the numerical and experimental parameters. The experimental results show that the failure stress of landslide deposits is decreased with increasing content of fine particles and also with increased water content, especially at the initial increasing stage. Cohesion of the saturated landslide deposits is increased, but the friction angle is decreased with the increase in the fine particle content. Shear strength parameters (the cohesion and friction angle) are decreased with the increasing water content at the initial increasing stage, and then, they slowly decrease. There is a critical value of the water content at 5%-7% (in weight) for the failure stress and shear strength parameters of the landslide deposits. Quadratic equations are presented to describe the relation between the bond force and cohesion, and the numerical friction coefficient and the experimental friction angle.
文摘Water resource management programs designed to control nuisance algal infestations have historically been dominated by reactive approaches. With increased regulatory scrutiny regarding algaecide use, data regarding efficacy of integrated management approaches are needed. This research outlines an efficient method of comparing management programs based upon exceeding designated algae action threshold levels (AATL) in pond systems. Phosphorus mitigating technologies were specifically evaluated as phosphorus had been indicated in supporting many nuisance algal types/densities. The objectives of this research were to evaluate pond management programs in terms of action thresholds exceeded, number of reactive algaecide treatments and algaecide amount required to maintain ponds below AATL. This research compared management programs consisting of: 1) Copper sulfate;2) SeClear Algaecide and Water Quality Enhancer;and 3) Phoslock phosphorus binding technology plus SeClear (as needed). Water and algae samples were analyzed every two weeks over two growing seasons on replicated research ponds and compared with designated AATL parameters. If an AATL was exceeded, then a reactive algaecide treatment was implemented for the corresponding water body. Ponds managed by copper sulfate alone exceeded a greater amount of AATL and required a significantly greater (P < 0.05) amount of reactive algaecide treatments to maintain control (average 6.5 annually) whereas SeClear and Phoslock plus ponds required 4.3 and 1.8 treatments, respectively. The average amount of copper applied to maintain ponds below AATL was 1414 g with copper sulfate whereas copper amendments were significantly decreased with SeClear (830 g) and even further with Phoslock plus management programs (342 g). Additionally, management programs incorporating nutrient mitigation required fewer treatments and less copper in year two of the program. This research provides valuable information for water resource managers to evaluate integrated approaches to water resource management in terms of social, economic, operational and regulatory viewpoints.
基金the financial support for the research presented in this paper from National Natural Science Foundation of China(42201142,42067066,51778590)。
文摘Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in inducing loess landslides.This study focuses on three neighboring cities sequentially situated on the Loess Plateau along the direction of aeolian deposition of loess,namely Lanzhou,Dingxi,and Tianshui,which are densely populated and prone to landslide disasters.The variations in hydraulic properties,including water retention capacity and permeability,are investigated through Soil Water Characteristic Curve(SWCC)test and hydraulic conductivity test.The experimental findings revealed that Tianshui loess exhibited the highest water retention capacity,followed by Dingxi loess,while Lanzhou loess demonstrated the lowest water retention capacity.Contrastingly,the results for the saturated permeability coefficient were found to be the opposite:Tianshui loess showed the lowest permeability,whereas Lanzhou loess displayed the highest permeability.These results are supported and analyzed by scanning electron microscopy(SEM)observation.In addition,the water retention capacity is mathematically expressed using the van Genuchten model and extended to predict unsaturated hydraulic properties of loess.The experimental results exhibit a strong accordance with one another and align with the regional distribution patterns of disasters.
基金the Science and Technology program of Gansu Province(Grant No.23ZDFA017)the National Natural Science Foundation of China(Grant Nos.U21A2012,42101136)the Program for Top Leading Talents of Gansu Province(Granted to Dr.MingYi Zhang).
文摘Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In this study,a series of laboratory model experiments were carried out on the migration of oil leakage under freeze-thaw action,and the distributions of the soil temperature,unfrozen water content,and displacement were analyzed.The results showed that under freeze-thaw action,liquid water in soils migrated to the freezing front and accumulated.After the pipe cracked,oil pollutants first gathered at one side of the leak hole,and then moved around.The pipe wall temperature affected the soil temperature field,and the thermal influence range below and transverse the pipe wall(35–40 cm)was larger than that above the pipe wall(8 cm)owing to the soil surface temperature.The leaked oil's temperature would make the temperature of the surrounding soil rise.Oil would inhibit the cooling of the soils.Besides,oil migration was significantly affected by the gravity and water flow patterns.The freeze-thaw action would affect the migration of the oil,which was mainly manifested as inhibiting the diffusion and movement of oil when soils were frozen.Unfrozen water transport caused by freeze-thaw cycles would also inhibit oil migration.The research results would provide a scientific reference for understanding the relationship between the movement of oil pollutants,water,and soil temperature,and for establishing a waterheat-mass transport model in frozen soils.
文摘Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbanized slope regions, especially those considered high-risk areas. Various other factors contribute to the process;thus, it is essential to analyze the causes of such incidents in all possible ways. Soil moisture plays a critical role in the Earth’s surface-atmosphere interaction systems;hence, measurements and their estimations are crucial for understanding all processes involved in the water balance, especially those related to landslides. Soil moisture can be estimated from in-situ measurements using different sensors and techniques, satellite remote sensing, hydrological modeling, and indicators to index moisture conditions. Antecedent soil moisture can significantly impact runoff for the same rainfall event in a watershed. The Antecedent Precipitation Index (API) or “retained rainfall,” along with the antecedent moisture condition from the Natural Resources Conservation Service, is generally applied to estimate runoff in watersheds where data is limited or unavailable. This work aims to explore API in estimating soil moisture and establish thresholds based on landslide occurrences. The estimated soil moisture will be compared and calibrated using measurements obtained through multisensor capacitance probes installed in a high-risk area located in the mountainous region of Campos do Jordão municipality, São Paulo, Brazil. The API used in the calculation has been modified, where the recession coefficient depends on air temperature variability as well as the climatological mean temperature, which can be considered as losses in the water balance due to evapotranspiration. Once the API is calibrated, it will be used to extrapolate to the entire watershed and consequently estimate soil moisture. By utilizing recorded mass movements and comparing them with API and soil moisture, it will be possible to determine thresholds, thus enabling anticipation of landslide occurrences.
基金supported by the National Natural Science Foundation of China(No.U21A2031)Key R&D Program of Hubei Province(No.2022BAA047)+3 种基金China Postdoctoral Science Foundation(No.2021M701969)Open Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(2022KDZ19)the Open Fund of Badong National Observation and Research Station of Geohazards(No.BNORSG-202207No.BNORSG-202304)。
文摘After the impoundment of the Three Gorges Reservoir,some huge ancient landslides were reactivated and deformed,showing typical hydrodynamic pressure landslide characteristics.The Baishuihe landslide was a typical hydrodynamic pressure landslide.The management department conducted slope cutting treatments from 2018 to 2019.To evaluate the treatment effect of rear slope cutting,this study analyzed the data of the surface deformation survey and field monitoring over the past 20 years and the characteristics of the reservoir water-triggered Baishuihe landslide deformation,and calculated the seepage field,displacement field,and stability coefficient before and after landslide treatment.The results showed that the deformation of the Baishuihe landslide was primarily related to a decrease in the reservoir water level.Owing to the poor permeability of the landslide soil,the decrease in the reservoir water level produced a seepage force pointing to the outside of the landslide body,leading to the step deformation of the landslide displacement.The landslide was treated by rear slope cutting,and the“step”deformation of the landslide disappeared after treatment.The hydrodynamic pressure caused by the change in reservoir water after cutting the slope did not disappear.However,as the slope cutting greatly reduced the overall sliding force of the landslide,its stability was greatly improved.Notably,high stability can still be ensured under extreme rainfall after treatment.Slope cutting is effective for treating hydrodynamic pressure landslides.This study can provide effective technical support for the treatment of reservoir landslides.
文摘Landslide term is used for all mass movements on slopes, including falling, overturns and flow debris. Using the potential landslide hazard zonation, areas with high potential of landslide hazard can be detected and so prevent the landslide occurrence with providing appropriate solutions. In this study, the landslide hazard zonation along the water transmission lines of the Amir-Almomenin (AS) water supply complex has been done. Studied area is located at the western part of the Northern Khorasan (Bojnord). Study procedure includes the general geology survey, recognition of the most important effective parameters on the landslide phenomena (such as slope, lithology, faults and streams) and has been evaluated as basic maps. Then, each layer was validated based on the importance of the effective factors using the maps weighting method in ArcGis software. Finally, the studied area was zoned based on the landslide potential using the overlapping of the various layers. Final zonation map shows that the North, Northwestern and Median parts of the studied area have the highest landslide potential. These areas are included of Marl and red Marl and to some extend loss deposits with slopes between 14 to more of 50 degrees. Seemingly, faults (due to low occurrence) and streams (due to drought) have lower effect on the landslide potential. However, the degree of the slope and type of lithology are the most important parameters on the landslide potential, respectively.
文摘The water shortage in the Middle East is a well-known problem. The introduction of diesel operated pumps for irrigation has caused a severe drop in groundwater levels. At the same time the demand for groundwater is growing to alarming proportions. Alternative ways of groundwater supply and management need to be found to halt social and economical disaster in the future. Why not look at history? Qanats are subterranean tunnels ancient civilizations built to access groundwater. The technique is a sustainable method of groundwater extraction. Throughout the Middle East some settlements still make use of these ancient systems. In the summer of 2000, a community rehabilitation of a qanat was executed International Center for Areas (ICARDA) and with support from the Agricultural Research in Dry international donors. The renovation served as a pilot community intervention within a participatory action research project aimed at evaluating the use of qanats in Syria. In a second stage of the project, the pilot was scaled up to a nation-wide survey of Syrian qanats in 2001. This resulted in qanat renovations on other sites executed in 2oo2 and 2oo3 with further international support. This paper compares the first pilot renovation with a recent qanat renovation that took place in Qarah, Syria.
基金"333"Project Scientific Research Foundation of Jiangsu ProvinceScience Fundation of Hohai University(3853)
文摘The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced, with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.
基金The"Twelfth Five-Year Plan"of the National Science and Technology Support Project(Grant No.2012BAK10B01)the National Natural Science Foundation of China(Grant Nos.41372321 and 41502305)China Geological Survey Projects(Grant No.121201009000150018)
文摘The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea level (ASL), and annual reservoir regulation has caused a 30-m water level difference after impoundment of the TGR since September 2008. This paper first presents the spatiotemporal distribution of landslides in six periods of 175 m ASL trial impoundments from 2008 to 2014. The results show that the number of landslides sharply decreased from 273 at the initial stage to less than ten at the second stage of impoundment. Based on this, the reservoir-induced landslides in the TGR region can be roughly classified into five failure patterns, i.e. accumulation landslide, dip-slope landslide, reversed bedding landslide, rockfall, and karst breccia landslide. The accumulation landslides and dip-slope landslides account for more than 90%. Taking the Shuping accumulation landslide (a sliding mass volume of 20.7 × 106 m^3) in Zigui County and the Outang dip-slope landslide (a sliding mass volume of about 90 × 106 m^3) in Fengjie County as two typical cases, the mechanisms of reactivation of the two landslides are analyzed. The monitoring data and factor of safety (FOS) calculation show that the accumulation landslide is dominated by water level variation in the reservoir as most part of the mass body is under 175 m ASL, and the dip-slope landslide is controlled by the coupling effect of reservoir water level variation and precipitation as an extensive recharge area of rainfall from the rear and the front mass is below 175 m ASL. The characteristics of landslide-induced impulsive wave hazards after and before reservoir impoundment are studied, and the probability of occurrence of a landslide-induced impulsive wave hazard has increased in the reservoir region. Simulation results of the Ganjingzi landslide in Wushan County indicate the strong relationship between landslide-induced surge and water variation with high potential risk to shipping and residential areas. Regarding reservoir regulation in TGR when using a single index, i.e. 1-d water level variation, water resources are not well utilized, and there is also potential risk of disasters since 2008. In addition, various indices such as 1-d, 5-d, and 10-d water level variations are proposed for reservoir regulation. Finally, taking reservoir-induced landslides in June 2015 for example, the feasibility of the optimizing indices of water level variations is verified.
基金This work was supported by the Natural Science Foundation of Chongqing,China(Nos.cstc2018jcyjAX0632 and cstc2019jcyj-bshX0043)the High-end Foreign Expert Introduction program(No.G20190022002)+1 种基金Chongqing Engineering Research Center of Disaster Prevention&Control for Banks and Structures in Three Gorges Reservoir Area(Nos.SXAPGC18ZD01 and SXAPGC18YB03)The financial support is gratefully acknowledged.The monitored data and historical records used in this study is from the Chinese National Field Scientific Observation Station of Landslide in The Yangtze Threc Gorges.
文摘Landslide is a common geological hazard in reservoir areas and may cause great damage to local residents’life and property.It is widely accepted that rainfall and periodic variation of water level are the two main factors triggering reservoir landslides.In this study,the Bazimen landslide located in the Three Gorges Reservoir(TGR)was back-analyzed as a case study.Based on the statistical features of the last 3-year monitored data and field instrumentations,the landslide susceptibility in an annual cycle and four representative periods was investigated via the deterministic and probabilistic analysis,respectively.The results indicate that the fluctuation of the reservoir water level plays a pivotal role in inducing slope failures,for the minimum stability coefficient occurs at the rapid decline period of water level.The probabilistic analysis results reveal that the initial sliding surface is the most important area influencing the occurrence of landslide,compared with other parts in the landslide.The seepage calculations from probabilistic analysis imply that rainfall is a relatively inferior factor affecting slope stability.This study aims to provide preliminary guidance on risk management and early warning in the TGR area.
文摘According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41672348,41931286,52008246).
文摘A combined survey including infrared thermography(IRT)and field-laboratory tests were conducted to analyze the thermal responses and thermal properties of loess on a landslide-prone loess slope in the Heifangtai terrace in Northwest China aiming at preliminarily demonstrating the potential of IRT as a complementary technique to the investigation of irrigation-induced loess landslides.Multitemporal thermographic surveys corresponding to various solar radiation intensities during the afternoon were carried out on the landslide-prone loess slope.Accordingly,the spatiotemporal distribution of the thermal responses within the observed slope surface was analyzed qualitatively and quantitatively.Meanwhile,field and laboratory investigations were also performed on the thermal properties of different landslide materials.The results indicate that loess,a landslide-prone deposit that usually has a relatively high water content,exhibits different thermal properties and anomalies,including a lower surface temperature and greater thermal inertia,compared to surrounding zones without landslides.The groundwater table and corresponding seepage line could also be obtained by determining the potential boundary between the thermal response distribution of landslide scarps and that of saturated deposits in the presence of landslides.The results of these investigations are expected to provide insight for future endeavors combining infrared thermography with other efficient survey methodologies(e.g.,InSAR,which can monitor the active displacement of a loess slope)to evaluate the activity of this kind of excessive irrigation-induced loess landslide.
基金National Key Basic Research Development of China (973 Program), No.2011CB40330305
文摘This note analyzes the change in water renewal time characteristics based on res- ervoir action and then establishes calculation models for the water renewal time in the Yellow River mainstream. The results indicate that the amount of renewable water with reservoir action can meet the annual water demand and that water flows naturally at the Lijin station near estuary. Initial storage dynamics is an important factor in water resource renewable capacity at a certain time, and rational reservoir action can promote sustainable water re- source utilization. When the initial storages in the Longyang Gorge reservoir are 9,343 and 5.343 billion m3, the water renewal times are 28 and 33.9 d, respectively. Flow stoppage appears in April and May.
基金We thank Esther Posner,PhD,from Edanz Group China(www.liwenbianji.cn/ac)for English language editing on an earlier draft of this manuscript.This work was supported by the 2017 Hunan Provincial Graduate Research Innovation Project of China(No.CX2017B649)the National Natural Science Foundation of China(No.51774134)+2 种基金the Excellent Youth Project of Hunan Provincial Department of Education(No.19B223)the Hunan Provincial Natural Science Foundation of China(No.2019JJ60044)the Hunan Provincial Natural Science Foundation of China(No.2018JJ64028).
文摘Based onmultiphase flowtheory and capillary mechanics,the dimensionless bond number expression of the influence of string grille wire spacing on droplet spreading is derived.Taking a liquid film formed by spreading droplets based on Kelvin correlation,the Young-Laplace equation,and the Hagen-Poiseuille law,an equation for calculating the thickness and height of the liquid film is established with temperature,relative humidity and molar volume of liquid phase as independent variables.According to the theory of string grille filtration and dust removal,a dust removal efficiency calculation model covering the wet string grille wire group is constructed based on the liquid film thickness,height,wire diameter,water film area,and vortex shedding frequency.Finally,a theoretical analysis of the influence of water film area on the efficiency of wet string grille dust removal is carried out based on the spray pressure and the ratio of string grille wire distance to wire diameter.It is found that the effect of spray pressure on water film area and dust removal efficiency is more significant than the string grille wire distance diameter ratio.Moreover,the optimized combination of wet string grille wire distance diameter ratio 0.84,wind speed 3m/s and spray pressure 0.8 MPa is found,which could provide an important reference for engineering applications.