Soil water repellency (SWR) is one of the most important physical properties of soils found all over the world, and it may have significant effects on the eco-hydrological processes of land ecosystems. In this study...Soil water repellency (SWR) is one of the most important physical properties of soils found all over the world, and it may have significant effects on the eco-hydrological processes of land ecosystems. In this study, the Capillary Rise Method was used to measure the SWR in the artificial vegetation area in Shapotou, located in the southeast area of the Tengger Desert, Ningxia Prov- ince of western China. The variation of the soil water repellency among different minor topographies, different depths and differ- ent particle sizes was analyzed. The results of the study indicate that the SWR shows distinct changes with vegetation restoration, and it increases with an increase in the period of dune stabilization. In the same vegetation area, the SWR of soils in inter-dune depressions or windward slopes is slightly greater than that in crest or leeward slopes. The SWR of 0-3 cm topsoil is significantly greater than that in the 3-6 cm soil layer. The SWR decreases with an increase in grain size and the differences among the SWRs of different sieved soil fractions are found to be significant. There is also a significantly positive correlation between the SWR and the proportion of soils with grain sizes of 0-0.05, 0.05-0.01 and 0.01-0.15 mm, and a significantly negative correlation between the SWR and the propotion of soils with grain sizes exceeding 0.15 mm. The increase of SWR in revegetation areas may depend on the continuous depositing of atmospheric dust on the stabilized dune surface as well as the formation of biological soil crusts, especially on the formation of algal and lichen crusts. Enhanced SWR influences the effectiveness of water use of sand plants in- habiting the sand dunes.展开更多
An old automotive industrial site located at Mexico City with many years of operation and contaminated with heavy oil hydrocarbons, particularly spent oils, was assessed for restoration using the surfactant enhanced s...An old automotive industrial site located at Mexico City with many years of operation and contaminated with heavy oil hydrocarbons, particularly spent oils, was assessed for restoration using the surfactant enhanced soil washing (SESW) process. The main goal of this study was to characterize the contaminated soil in terms of TPHs, BTEX, PAHs, and metals contents as well as microbiologically (total heterotrophs and specific degrading microorganisms). We also aimed to determine the surfactant type and concentration to be used in the SESW process for the automotive waste oil contaminated soil. At the end, sixteen kg of contaminated soil were washed and the produced wastewater (approximately 40 L) was characterized in terms of COD, BOD;solids, and other physico-chemical parameters. The soil contained about 14,000 mg of TPH/kg soil (heavy fraction), 0.13 mg/kg of benzo (k) fluoranthene and 0.07 mg/kg of benzo (a) pyrene as well as traces of some metals. Metals concentrations were always under the maximum concentration levels suggested by Mexican regulations. 15 different surfactants were used to identify the one with the capability to achieve the highest TPH removal. Surfactants included 5 anionics, 2 zwitterionic, 5 nonionics and 3 natural gums. Sulfopon 30 at a concentration of 0.5% offered the best surfactant performance. The TPH removals employing the different surfactants were in the range from 38% to 68%, in comparison to the soil washing with water (10% of TPH removal). Once the surfactant was selected, 70 kg of soil were washed and the resulting water contained approximately 1300 mg/L of COD, 385 mg/L of BOD (BOD/COD = 0.29), 122 mg/L of MBAS, and 212 mg/L of oil and greases, among other contaminants.展开更多
The effects of soil texture, initial water content and bulk density on diesel oil infiltration in fine sand and silty clay loam materials were evaluated. Three physical and two empirical equations express diesel oil i...The effects of soil texture, initial water content and bulk density on diesel oil infiltration in fine sand and silty clay loam materials were evaluated. Three physical and two empirical equations express diesel oil infiltration through soils with time, with coefficients of determination greater than 0.99. Diesel oil infiltrates more quickly in the fine sand than in the silty clay loam material. Diesel oil infiltration rates are found to decrease with increasing initial water content and bulk density for the silty clay loam material. The infiltration rate of diesel oil in the fine sand material increases slightly with increasing initial water content. The diesel oil saturated conductivity(Kdiesel) decreases with increasing bulk density for the silty clay loam column. Diesel oil sorptivity(S) decreases linearly with increased initial water content and bulk density of the silty clay loam material. Changes in empirical parameters relative to initial water content and bulk density are similar to the parameter S.展开更多
This study was performed to investigate the water repellent effectiveness of natural oil-applied soil when it is used as a building material. Natural oil types such as olive oil, bean oil, perilla oil and linseed oil,...This study was performed to investigate the water repellent effectiveness of natural oil-applied soil when it is used as a building material. Natural oil types such as olive oil, bean oil, perilla oil and linseed oil, which are being used for producing water repellent timber, are selected for the experiments. It is expected that perilla oil and in seed oil, which are drying oil types will have better water repellent effectiveness than the other types. For the evaluation of water repellence of natural oil-applied soil, a contact angle test was performed. A contact angle of water drop on various surface conditions were tested, and large differences were seen between the natural oil-applied soil and untreated soil. As a result, it is showed that all natural oil types have water repellent effectiveness. However, linseed oil, which is a drying oil type, shows an outstanding water repellent effectiveness value, while perila oil, which is also a drying oil type, shows the lowest value. Additionally, results show that there is no link between water repellent effectiveness and the number of applications of natural oil. Nevertheless, existing commercial water repellents show better performance than natural oil, and it is anticipated that the results of this study will provide essential information for further research to enhance the water repellent effectiveness of soil as a building material.展开更多
The evaluation of gross alpha and beta activities in crude oil contaminated soil, sediment and water samples was conducted in ten oil polluted environment of Delta State using Gas-flow proportional counter. Samples we...The evaluation of gross alpha and beta activities in crude oil contaminated soil, sediment and water samples was conducted in ten oil polluted environment of Delta State using Gas-flow proportional counter. Samples were collected from the oil polluted environment in each oil field and samples were prepared and analyzed following standard procedures. The mean gross alpha and beta activities obtained are 331.4 ± 24.5 Bq kg<sup>-1</sup> and 11,335 ± 112 Bq kg<sup>-1</sup> respectively for soil, 259.2 ± 17.6 Bq kg<sup>-1</sup> and 4508 ± 96 Bq kg<sup>-1</sup> respectively for sediment, and 1.00 ± 0.09 Bq kg<sup>-1</sup> and 20.3 ± 1.7 Bq kg<sup>-1</sup> respectively for water. The estimated average values of the total annual effective dose equivalent (<i>AEDE</i><i><sub>T</sub></i> (<i>α,β</i>)), the total annual gonadal dose equivalent (<i>AGDE</i><i><sub>T</sub></i> (<i>α,β</i>))), and the total excess lifetime cancer risk (<i>ELCR</i><i><sub>T</sub></i> (<i>α,β</i>)) are 10.64 mSv y<sup>-1</sup>, 0.037 μSv y<sup>-1</sup> and 0.037 μSv y<sup>-1</sup> respectively. The gross alpha and beta activities values obtained in soil and sediment were relatively high compared to values reported in some parts of the country and other regions and countries of the world. The radiological risk parameters examined show that <i>AEDE</i><i><sub>T</sub></i> (<i>α,β</i>) and <i>AGDE</i><i><sub>T</sub></i> (<i>α,β</i>) are above recommended permissible limits while <i>ELCR</i><i><sub>T</sub></i> (<i>α,β</i>) is within the recommended permissible limit. The overall results obtained in this study indicate that the environmental samples have been radiologically impaired due to the crude oil spillage. An appropriate remediation technique was therefore recommended to remediate the polluted soil, sediment, and water to their near original state.展开更多
A polyether diol poly[3-bromomethyl-3-tridecafluorooctyloxymethyloxetane]glycol(PFBOX 3) was prepared in 91% yield from ring opening polymerization of 3-bromomethyl-3-tridecafluorooctyloxymethyloxetane 2 which was der...A polyether diol poly[3-bromomethyl-3-tridecafluorooctyloxymethyloxetane]glycol(PFBOX 3) was prepared in 91% yield from ring opening polymerization of 3-bromomethyl-3-tridecafluorooctyloxymethyloxetane 2 which was derived from 3,3-dibromomethyloxetane 1 and 1H,1H,2H,2H-perfluorooctanol.The waterborne fluorinated polyurethane FPU was thus obtained by condensed polymerization of PFBOX 3 with isophoronediisocyanate(IPDI).The structure of FPU was characterized by Fourier transform infrared spectrometer(FTIR).FPU showed good thermal stability under 300℃.The surface properties of FPU were studied by applied on cotton fabric.The treated fabric surface showed excellent water repellent property as the contact angle reached 147°.On the other hand,the surface showed slightly oil repellent property as the contact angle for nujol droplet was 126°.展开更多
Water-repellent(WR) soil greatly influences infiltration behavior. This research determined the impacts of WR levels of silt loam soil layer during infiltration. Three column scenarios were utilized, including homogen...Water-repellent(WR) soil greatly influences infiltration behavior. This research determined the impacts of WR levels of silt loam soil layer during infiltration. Three column scenarios were utilized, including homogeneous wettable silt loam or sand, silt loam over sand(silt loam/sand), and sand over silt loam(sand/silt loam). A 5-cm thick silt loam soil layer was placed either at the soil surface or 5 cm below the soil surface. The silt loam soil used had been treated to produce different WR levels, wettable, slightly WR, strongly WR, and severely WR. As the WR level increased from wettable to severely WR, the cumulative infiltration decreased. Traditional wetting front-related equations did not adequately describe the infiltration rate and time relationships for layered WR soils. The Kostiakov equation provided a good fit for the first infiltration stage. Average infiltration rates for wettable, slightly WR, strongly WR, and severely WR during the 2 nd infiltration stage were 0.126, 0.021, 0.002, and 0.001 mm min^(-1) for the silt loam/sand scenario,respectively, and 0.112, 0.003, 0.002, and 0.000 5 mm min^(-1) for the sand/silt loam scenario, respectively. Pseudo-saturation phenomena occurred when visually examining the wetting fronts and from the apparent changes in water content(?θ_(AP)) at the slightly WR,strongly WR, and severely WR levels for the silt loam/sand scenario. Much larger ?θAPvalues indicated the possible existence of finger flow. Delayed water penetration into the surface soil for the strongly WR level in the silt loam/sand scenario suggested negative water heads with infiltration times longer than 10 min. The silt loam/sand soil layers produced sharp transition zones of water content. The WR level of the silt loam soil layer had greater effects on infiltration than the layer position in the column.展开更多
Soil wettability and water repellency, two important soil physical properties, play an important role in water retention and water conductivity in arid and semi-arid regions. To date, there is a lack of information on...Soil wettability and water repellency, two important soil physical properties, play an important role in water retention and water conductivity in arid and semi-arid regions. To date, there is a lack of information on soil water repellency in calcareous soils of western lran. In this study, soil water repellency and its affecting factors were studied using 20 soil series collected from Hamadan Province~ western Iran. The effects of soil properties including organic carbon content (SOC), total nitrogen (TN), C:N ratio, texture, CaCO3 content, and both fungal and bacterial activities on water repellency were investigated using air-dried, oven-dried and heated soil samples. Water repellency index (WRI) was determined using the short-time sorptivity (water/ethanol) method. To distinguish the actual effects of SOC, a set of soil samples were heated at 300 ~C to remove SOC and then WRI was measured on the heated samples. Relative water repellency index (RWRI) was defined as the change of WRI due to heating relative to the oven-dry WRI value. Results of the WRI values showed that the soils were sub-critically water-repellent. Pasture soils had higher WRI values compared to tilled soils, resulting from high SOC and TN, and high activities of bacteria and fungi. It was observed that SOC, TN, fungal activity, and SOC:clay ratio had significant positive impacts on WRI. Strong positive correlations of RWRI with SOC, TN and fungal activity were also observed. Pedotransfer functions derived for predicting WRI showed that the WRI values had an increasing trend with the increases in fungal activity, salinity, alkalinity and fine clay content, but showed a decreasing trend with increasing bacterial activity.展开更多
Plantation establishment using invasive alien plants is common in South Africa,but the effects of these plants on soil physical properties in the Vhembe biosphere is unknown.In this comparative study,soils underneath ...Plantation establishment using invasive alien plants is common in South Africa,but the effects of these plants on soil physical properties in the Vhembe biosphere is unknown.In this comparative study,soils underneath Pinus elliottii and Eucalyptus cloeziana were assessed for differences in physical properties compared to soils underneath adjacent natural sites in the Entabeni plantation in the Vhembe biosphere in Limpopo Province,South Africa.Soils were collected from topsoil over 3 months and quantified for gravimetric soil moisture,penetration resistance,soil infiltration,hydraulic conductivity and soil water repellency.For all 3 months,soils from both P.elliottii and E.cloeziana plantations were compact and had low penetration resistance compared to soils from adjacent natural sites.Soil infiltration and hydraulic conductivity were significantly(p\0.05)lower in soils from plantations compared to soils from adjacent natural sites,and more so from the E.cloeziana plantation than from P.elliottii.Soil water repellency was observed in soils from E.cloeziana only in May and June.Soils from the invasive alien tree plantation have decreased soil moisture,infiltration rate,hydraulic conductivity and are compact as well as repellent(only E.cloeziana),all poor soil physical properties.However,this decline in soil physical properties was not uniform between the two invasive alien plantation species;hence we cannot generalize about the effects of invasive alien plantation species on soil physical properties,and further research is required across different ecological regions.展开更多
We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollution, and also determined the temperature dependencies of these changed thermophysical properties....We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollution, and also determined the temperature dependencies of these changed thermophysical properties. In the first pollution scenario, the oil product was introduced into wet river sand, and in the second case, dry sand was contaminated by the oil product and was then moistened with water. By considering these two scenarios as multicomponent dispersion systems with varying degrees of contamination and humidity, and by using a polystructural granular model with pore spaces and closed inclusions, we calculated that the heat conductivity of the sandy soil increased under the first pollution scenario and decreased under the second, but the change in the volumetric heat capacity of the sandy soil was proportional only to the amount of oil pollution, not the manner in which it was introduced. We also determined the temperature dependencies of these two thermophysical properties of sandy soil when polluted by oil, of which information will be useful for future containment and remediation of oil-contaminated soil.展开更多
In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a ...In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a better understanding of the ecological state of soil cover, its resilience to anthropogenic impacts, and its possible disturbance caused by the drilling pad construction activity, and by the laying of geophysical profiles. An analysis of soil pollution for the study territory generally showed that the soils are polluted with chemical elements which refer to toxicity classes: Pb, Cu, Ni, Cr, Ba and Mn. High levels ofoil products were detected near boreholes. Strong mineralization was recorded in the soil near borehole. It has a chloride-sodium chemical composition. As a result of the construction of foundation pits, recesses, ditches and earth embankments, the soil is totally destroyed, and rock outcrops show up. Disturbances of the sod cover due to road construction or even by all-terrain vehicles in these extreme conditions entail an accelerated development of linear erosion to form scours and gullies. Elimination of the canopy layer leads to an increase in surface heating, and to an acceleration of permafrost thawing. Swamping is accelerated on negative relief forms due to the increased entry of melt waters.展开更多
Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In thi...Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In this study,a series of laboratory model experiments were carried out on the migration of oil leakage under freeze-thaw action,and the distributions of the soil temperature,unfrozen water content,and displacement were analyzed.The results showed that under freeze-thaw action,liquid water in soils migrated to the freezing front and accumulated.After the pipe cracked,oil pollutants first gathered at one side of the leak hole,and then moved around.The pipe wall temperature affected the soil temperature field,and the thermal influence range below and transverse the pipe wall(35–40 cm)was larger than that above the pipe wall(8 cm)owing to the soil surface temperature.The leaked oil's temperature would make the temperature of the surrounding soil rise.Oil would inhibit the cooling of the soils.Besides,oil migration was significantly affected by the gravity and water flow patterns.The freeze-thaw action would affect the migration of the oil,which was mainly manifested as inhibiting the diffusion and movement of oil when soils were frozen.Unfrozen water transport caused by freeze-thaw cycles would also inhibit oil migration.The research results would provide a scientific reference for understanding the relationship between the movement of oil pollutants,water,and soil temperature,and for establishing a waterheat-mass transport model in frozen soils.展开更多
Oil spills and oil/water wastewater are among the great concerns regarding oil pollution.Existing technologies face many limitations and in some cases are responsible for causing secondary pollution,therefore there is...Oil spills and oil/water wastewater are among the great concerns regarding oil pollution.Existing technologies face many limitations and in some cases are responsible for causing secondary pollution,therefore there is as seek for environmental friendly solutions.Biomass,from which celluloses are highlighted,are being employed for oil/water separation or oil absorbents membranes.Usually,these membranes are obtained by freeze drying of CNF(cellulose nano-fibrils)suspensions followed by chemical modification for hydrophobization,which involves expensive process as chemical vapor deposition and expensive reactants as sylanes,turning these processes hardly scalable.Here,we produced a natural porous structure paper from eucalyptus pulp fibers modified by a dipping and heating process in a blocked diisocyanate solution.After the surface treatment,contact angle with water reached 144°and water absorption reduced seven times,keeping the good oil absorbance.The chemical modification process is simple to be performed and use a very low quantity of reactant estimated to be less than 0.1 wt%based on cellulose.The good mechanical properties of the material allows its use in non usual conditions which can be of great importance depending on the environmental conditions.展开更多
Two novel fluorinated acrylate monomers 4a and 4b containing perfluorohexyl group were designed and synthesized starting from 4-allylanisole and perfluorohexyl iodide.The monomers 4a and 4b were then copolymerized wit...Two novel fluorinated acrylate monomers 4a and 4b containing perfluorohexyl group were designed and synthesized starting from 4-allylanisole and perfluorohexyl iodide.The monomers 4a and 4b were then copolymerized with octadecyl acrylate and 2-hydroxyethyl acrylate by emulsion polymerization to give copolymers PFA 1 and PFA 2 respectively.The co-polymers were characterized by FT-IR and their heat stability was measured by TGA.The surface properties of PFA 1 and PFA 2 were studied by applying on cotton fabrics.The treated cotton fabrics showed good water-repellent property,and the contact angles for water reached 142° for PFA 1 and 136° for PFA 2.展开更多
A novel perfluorooctylated citric acid was synthesized successfully via allylation of triethyl citrate followed by perfluorocctylation, reduction and hydrolysis. The fabrics treated with this compound showed good oil ...A novel perfluorooctylated citric acid was synthesized successfully via allylation of triethyl citrate followed by perfluorocctylation, reduction and hydrolysis. The fabrics treated with this compound showed good oil repellent and moderate water repellent properties: the oil repellent rating and the water repellent score were 6 and 80 respectively. Even after 10 washing cycles, the repellent properties were kept at the same level. The finished fabrics also showed some wrinkle-resistant properties, and the dry wrinkle recovery angle was increased by 53° compared with untreated fabrics. The critical surface energy of the treated fabric surface was 20±1 mN/m. This multifunctional compound also showed good water solubility, which would be beneficial for the environmental protection.展开更多
Traditional lubricant impregnated surfaces usually required fluorinated lubricants to achieve slippery oil repellency, but the lubricants infused were expensive and toxic and also suffered from limited stability becau...Traditional lubricant impregnated surfaces usually required fluorinated lubricants to achieve slippery oil repellency, but the lubricants infused were expensive and toxic and also suffered from limited stability because of their migrating, evaporating, and leaking during use. Herein, to address this issue, we fabricated a durably fluorine-free slippery oil-repellent hydrogel coating using water as the lubricant. Due to its enhanced water-binding affinity, water could wet the hydrogel completely and form a hydrated-water layer on the surface. The hydrated water layer could act as a lubricant to repel foreign oils, which allowed the hydrogel to display slippery oil-repellency in air, exhibit superoleophobicity underwater, and resist oil fouling upon oil immersion.The hydrogel kept its oil-repellent properties after mechanical tests as well as thermal and freezing treatments,demonstrating its durability. Thanks to its moisture absorption, the water lubricant layer could self-regenerate upon the lubricated water layer depletion through exposure to a humid environment. Exploiting it is water-attracting and oil repellency, the hydrogel coating was demonstrated as a versatile platform for oil/water separation, polymer/water separation, drag-reduction, and antifogging.展开更多
Despite ample literature,the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified.A clear understanding of the surface runoff and er...Despite ample literature,the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified.A clear understanding of the surface runoff and erosion rates altered by wildfires and prescribed fires is beneficial to identify the most suitable post-fire treatment This study has carried out a combined analysis of the hydrological response of soil and its driving factors in burned forests of Central-Eastern Spain.The pine stands of these forests were subjected to both prescribed fire and wildfire,and,in the latter case,to post-fire treatment with mulching.Moreover,simple multi-regression models are proposed to predict runoff and erosion in the experi-mental conditions.In the case of the prescribed burning,the fire had a limited impact on runoff and erosion compared to the unburned areas,due to the limited changes in soil parameters.In contrast,the wildfire increased many-fold the runoff and erosion rates,but the mulching reduced the hydrological response of the burned soils,particularly for the first two-three rainfalls after the fire.The increase in runoff and erosion after the wildfire was associated to the removal of the vegetation cover,soil water repellency,and ash left by fire;the changes in water infiltration played a minor role on runoff and erosion.The multi-regression models developed for the prescribed fire were accurate to predict the post-fire runoff coefficients.However,these models were less reliable for predictions of the mean erosion rates.The predictions of erosion after wildfire and mulching were excellent,while those of runoff were not satisfactory(except for the mean values).These results are useful to better understand the relations among the hydrological effects of fire on one side and the main soil properties and covers on the other side.Moreover,the proposed prediction models are useful to support the planning activities of forest managers and hydrologists towards a more effective conservation of forest soils.展开更多
基金supported by the National Basic Research Program of China(Grant No.2009CB421303)the National Natural Sciences Foundation(Grant Nos.40971031,40701002)
文摘Soil water repellency (SWR) is one of the most important physical properties of soils found all over the world, and it may have significant effects on the eco-hydrological processes of land ecosystems. In this study, the Capillary Rise Method was used to measure the SWR in the artificial vegetation area in Shapotou, located in the southeast area of the Tengger Desert, Ningxia Prov- ince of western China. The variation of the soil water repellency among different minor topographies, different depths and differ- ent particle sizes was analyzed. The results of the study indicate that the SWR shows distinct changes with vegetation restoration, and it increases with an increase in the period of dune stabilization. In the same vegetation area, the SWR of soils in inter-dune depressions or windward slopes is slightly greater than that in crest or leeward slopes. The SWR of 0-3 cm topsoil is significantly greater than that in the 3-6 cm soil layer. The SWR decreases with an increase in grain size and the differences among the SWRs of different sieved soil fractions are found to be significant. There is also a significantly positive correlation between the SWR and the proportion of soils with grain sizes of 0-0.05, 0.05-0.01 and 0.01-0.15 mm, and a significantly negative correlation between the SWR and the propotion of soils with grain sizes exceeding 0.15 mm. The increase of SWR in revegetation areas may depend on the continuous depositing of atmospheric dust on the stabilized dune surface as well as the formation of biological soil crusts, especially on the formation of algal and lichen crusts. Enhanced SWR influences the effectiveness of water use of sand plants in- habiting the sand dunes.
文摘An old automotive industrial site located at Mexico City with many years of operation and contaminated with heavy oil hydrocarbons, particularly spent oils, was assessed for restoration using the surfactant enhanced soil washing (SESW) process. The main goal of this study was to characterize the contaminated soil in terms of TPHs, BTEX, PAHs, and metals contents as well as microbiologically (total heterotrophs and specific degrading microorganisms). We also aimed to determine the surfactant type and concentration to be used in the SESW process for the automotive waste oil contaminated soil. At the end, sixteen kg of contaminated soil were washed and the produced wastewater (approximately 40 L) was characterized in terms of COD, BOD;solids, and other physico-chemical parameters. The soil contained about 14,000 mg of TPH/kg soil (heavy fraction), 0.13 mg/kg of benzo (k) fluoranthene and 0.07 mg/kg of benzo (a) pyrene as well as traces of some metals. Metals concentrations were always under the maximum concentration levels suggested by Mexican regulations. 15 different surfactants were used to identify the one with the capability to achieve the highest TPH removal. Surfactants included 5 anionics, 2 zwitterionic, 5 nonionics and 3 natural gums. Sulfopon 30 at a concentration of 0.5% offered the best surfactant performance. The TPH removals employing the different surfactants were in the range from 38% to 68%, in comparison to the soil washing with water (10% of TPH removal). Once the surfactant was selected, 70 kg of soil were washed and the resulting water contained approximately 1300 mg/L of COD, 385 mg/L of BOD (BOD/COD = 0.29), 122 mg/L of MBAS, and 212 mg/L of oil and greases, among other contaminants.
基金Projects(40272108,41402208)supported by the National Natural Science Foundation of ChinaProjects(ZR2012DL05,ZR2015EL044)supported by Shandong Provincial Natural Science Foundation,China+1 种基金Project(4072-114017)supported by Young Teachers’ Development of Shandong University of Technology,ChinaProject(J12LC51)supported by Shandong Province Higher Educational Science and Technology Program,China
文摘The effects of soil texture, initial water content and bulk density on diesel oil infiltration in fine sand and silty clay loam materials were evaluated. Three physical and two empirical equations express diesel oil infiltration through soils with time, with coefficients of determination greater than 0.99. Diesel oil infiltrates more quickly in the fine sand than in the silty clay loam material. Diesel oil infiltration rates are found to decrease with increasing initial water content and bulk density for the silty clay loam material. The infiltration rate of diesel oil in the fine sand material increases slightly with increasing initial water content. The diesel oil saturated conductivity(Kdiesel) decreases with increasing bulk density for the silty clay loam column. Diesel oil sorptivity(S) decreases linearly with increased initial water content and bulk density of the silty clay loam material. Changes in empirical parameters relative to initial water content and bulk density are similar to the parameter S.
文摘This study was performed to investigate the water repellent effectiveness of natural oil-applied soil when it is used as a building material. Natural oil types such as olive oil, bean oil, perilla oil and linseed oil, which are being used for producing water repellent timber, are selected for the experiments. It is expected that perilla oil and in seed oil, which are drying oil types will have better water repellent effectiveness than the other types. For the evaluation of water repellence of natural oil-applied soil, a contact angle test was performed. A contact angle of water drop on various surface conditions were tested, and large differences were seen between the natural oil-applied soil and untreated soil. As a result, it is showed that all natural oil types have water repellent effectiveness. However, linseed oil, which is a drying oil type, shows an outstanding water repellent effectiveness value, while perila oil, which is also a drying oil type, shows the lowest value. Additionally, results show that there is no link between water repellent effectiveness and the number of applications of natural oil. Nevertheless, existing commercial water repellents show better performance than natural oil, and it is anticipated that the results of this study will provide essential information for further research to enhance the water repellent effectiveness of soil as a building material.
文摘The evaluation of gross alpha and beta activities in crude oil contaminated soil, sediment and water samples was conducted in ten oil polluted environment of Delta State using Gas-flow proportional counter. Samples were collected from the oil polluted environment in each oil field and samples were prepared and analyzed following standard procedures. The mean gross alpha and beta activities obtained are 331.4 ± 24.5 Bq kg<sup>-1</sup> and 11,335 ± 112 Bq kg<sup>-1</sup> respectively for soil, 259.2 ± 17.6 Bq kg<sup>-1</sup> and 4508 ± 96 Bq kg<sup>-1</sup> respectively for sediment, and 1.00 ± 0.09 Bq kg<sup>-1</sup> and 20.3 ± 1.7 Bq kg<sup>-1</sup> respectively for water. The estimated average values of the total annual effective dose equivalent (<i>AEDE</i><i><sub>T</sub></i> (<i>α,β</i>)), the total annual gonadal dose equivalent (<i>AGDE</i><i><sub>T</sub></i> (<i>α,β</i>))), and the total excess lifetime cancer risk (<i>ELCR</i><i><sub>T</sub></i> (<i>α,β</i>)) are 10.64 mSv y<sup>-1</sup>, 0.037 μSv y<sup>-1</sup> and 0.037 μSv y<sup>-1</sup> respectively. The gross alpha and beta activities values obtained in soil and sediment were relatively high compared to values reported in some parts of the country and other regions and countries of the world. The radiological risk parameters examined show that <i>AEDE</i><i><sub>T</sub></i> (<i>α,β</i>) and <i>AGDE</i><i><sub>T</sub></i> (<i>α,β</i>) are above recommended permissible limits while <i>ELCR</i><i><sub>T</sub></i> (<i>α,β</i>) is within the recommended permissible limit. The overall results obtained in this study indicate that the environmental samples have been radiologically impaired due to the crude oil spillage. An appropriate remediation technique was therefore recommended to remediate the polluted soil, sediment, and water to their near original state.
基金Shanghai Municipal Scientific Committee,China (No. 08JC1400400)
文摘A polyether diol poly[3-bromomethyl-3-tridecafluorooctyloxymethyloxetane]glycol(PFBOX 3) was prepared in 91% yield from ring opening polymerization of 3-bromomethyl-3-tridecafluorooctyloxymethyloxetane 2 which was derived from 3,3-dibromomethyloxetane 1 and 1H,1H,2H,2H-perfluorooctanol.The waterborne fluorinated polyurethane FPU was thus obtained by condensed polymerization of PFBOX 3 with isophoronediisocyanate(IPDI).The structure of FPU was characterized by Fourier transform infrared spectrometer(FTIR).FPU showed good thermal stability under 300℃.The surface properties of FPU were studied by applied on cotton fabric.The treated fabric surface showed excellent water repellent property as the contact angle reached 147°.On the other hand,the surface showed slightly oil repellent property as the contact angle for nujol droplet was 126°.
基金supported by the National Natural Science Foundation of China (No. 51579213)the National Key Research and Development Program of China (No. 2017YFC0403303)
文摘Water-repellent(WR) soil greatly influences infiltration behavior. This research determined the impacts of WR levels of silt loam soil layer during infiltration. Three column scenarios were utilized, including homogeneous wettable silt loam or sand, silt loam over sand(silt loam/sand), and sand over silt loam(sand/silt loam). A 5-cm thick silt loam soil layer was placed either at the soil surface or 5 cm below the soil surface. The silt loam soil used had been treated to produce different WR levels, wettable, slightly WR, strongly WR, and severely WR. As the WR level increased from wettable to severely WR, the cumulative infiltration decreased. Traditional wetting front-related equations did not adequately describe the infiltration rate and time relationships for layered WR soils. The Kostiakov equation provided a good fit for the first infiltration stage. Average infiltration rates for wettable, slightly WR, strongly WR, and severely WR during the 2 nd infiltration stage were 0.126, 0.021, 0.002, and 0.001 mm min^(-1) for the silt loam/sand scenario,respectively, and 0.112, 0.003, 0.002, and 0.000 5 mm min^(-1) for the sand/silt loam scenario, respectively. Pseudo-saturation phenomena occurred when visually examining the wetting fronts and from the apparent changes in water content(?θ_(AP)) at the slightly WR,strongly WR, and severely WR levels for the silt loam/sand scenario. Much larger ?θAPvalues indicated the possible existence of finger flow. Delayed water penetration into the surface soil for the strongly WR level in the silt loam/sand scenario suggested negative water heads with infiltration times longer than 10 min. The silt loam/sand soil layers produced sharp transition zones of water content. The WR level of the silt loam soil layer had greater effects on infiltration than the layer position in the column.
文摘Soil wettability and water repellency, two important soil physical properties, play an important role in water retention and water conductivity in arid and semi-arid regions. To date, there is a lack of information on soil water repellency in calcareous soils of western lran. In this study, soil water repellency and its affecting factors were studied using 20 soil series collected from Hamadan Province~ western Iran. The effects of soil properties including organic carbon content (SOC), total nitrogen (TN), C:N ratio, texture, CaCO3 content, and both fungal and bacterial activities on water repellency were investigated using air-dried, oven-dried and heated soil samples. Water repellency index (WRI) was determined using the short-time sorptivity (water/ethanol) method. To distinguish the actual effects of SOC, a set of soil samples were heated at 300 ~C to remove SOC and then WRI was measured on the heated samples. Relative water repellency index (RWRI) was defined as the change of WRI due to heating relative to the oven-dry WRI value. Results of the WRI values showed that the soils were sub-critically water-repellent. Pasture soils had higher WRI values compared to tilled soils, resulting from high SOC and TN, and high activities of bacteria and fungi. It was observed that SOC, TN, fungal activity, and SOC:clay ratio had significant positive impacts on WRI. Strong positive correlations of RWRI with SOC, TN and fungal activity were also observed. Pedotransfer functions derived for predicting WRI showed that the WRI values had an increasing trend with the increases in fungal activity, salinity, alkalinity and fine clay content, but showed a decreasing trend with increasing bacterial activity.
文摘Plantation establishment using invasive alien plants is common in South Africa,but the effects of these plants on soil physical properties in the Vhembe biosphere is unknown.In this comparative study,soils underneath Pinus elliottii and Eucalyptus cloeziana were assessed for differences in physical properties compared to soils underneath adjacent natural sites in the Entabeni plantation in the Vhembe biosphere in Limpopo Province,South Africa.Soils were collected from topsoil over 3 months and quantified for gravimetric soil moisture,penetration resistance,soil infiltration,hydraulic conductivity and soil water repellency.For all 3 months,soils from both P.elliottii and E.cloeziana plantations were compact and had low penetration resistance compared to soils from adjacent natural sites.Soil infiltration and hydraulic conductivity were significantly(p\0.05)lower in soils from plantations compared to soils from adjacent natural sites,and more so from the E.cloeziana plantation than from P.elliottii.Soil water repellency was observed in soils from E.cloeziana only in May and June.Soils from the invasive alien tree plantation have decreased soil moisture,infiltration rate,hydraulic conductivity and are compact as well as repellent(only E.cloeziana),all poor soil physical properties.However,this decline in soil physical properties was not uniform between the two invasive alien plantation species;hence we cannot generalize about the effects of invasive alien plantation species on soil physical properties,and further research is required across different ecological regions.
文摘We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollution, and also determined the temperature dependencies of these changed thermophysical properties. In the first pollution scenario, the oil product was introduced into wet river sand, and in the second case, dry sand was contaminated by the oil product and was then moistened with water. By considering these two scenarios as multicomponent dispersion systems with varying degrees of contamination and humidity, and by using a polystructural granular model with pore spaces and closed inclusions, we calculated that the heat conductivity of the sandy soil increased under the first pollution scenario and decreased under the second, but the change in the volumetric heat capacity of the sandy soil was proportional only to the amount of oil pollution, not the manner in which it was introduced. We also determined the temperature dependencies of these two thermophysical properties of sandy soil when polluted by oil, of which information will be useful for future containment and remediation of oil-contaminated soil.
文摘In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a better understanding of the ecological state of soil cover, its resilience to anthropogenic impacts, and its possible disturbance caused by the drilling pad construction activity, and by the laying of geophysical profiles. An analysis of soil pollution for the study territory generally showed that the soils are polluted with chemical elements which refer to toxicity classes: Pb, Cu, Ni, Cr, Ba and Mn. High levels ofoil products were detected near boreholes. Strong mineralization was recorded in the soil near borehole. It has a chloride-sodium chemical composition. As a result of the construction of foundation pits, recesses, ditches and earth embankments, the soil is totally destroyed, and rock outcrops show up. Disturbances of the sod cover due to road construction or even by all-terrain vehicles in these extreme conditions entail an accelerated development of linear erosion to form scours and gullies. Elimination of the canopy layer leads to an increase in surface heating, and to an acceleration of permafrost thawing. Swamping is accelerated on negative relief forms due to the increased entry of melt waters.
基金the Science and Technology program of Gansu Province(Grant No.23ZDFA017)the National Natural Science Foundation of China(Grant Nos.U21A2012,42101136)the Program for Top Leading Talents of Gansu Province(Granted to Dr.MingYi Zhang).
文摘Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In this study,a series of laboratory model experiments were carried out on the migration of oil leakage under freeze-thaw action,and the distributions of the soil temperature,unfrozen water content,and displacement were analyzed.The results showed that under freeze-thaw action,liquid water in soils migrated to the freezing front and accumulated.After the pipe cracked,oil pollutants first gathered at one side of the leak hole,and then moved around.The pipe wall temperature affected the soil temperature field,and the thermal influence range below and transverse the pipe wall(35–40 cm)was larger than that above the pipe wall(8 cm)owing to the soil surface temperature.The leaked oil's temperature would make the temperature of the surrounding soil rise.Oil would inhibit the cooling of the soils.Besides,oil migration was significantly affected by the gravity and water flow patterns.The freeze-thaw action would affect the migration of the oil,which was mainly manifested as inhibiting the diffusion and movement of oil when soils were frozen.Unfrozen water transport caused by freeze-thaw cycles would also inhibit oil migration.The research results would provide a scientific reference for understanding the relationship between the movement of oil pollutants,water,and soil temperature,and for establishing a waterheat-mass transport model in frozen soils.
基金This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil(CAPES)—Finance Code 001.Authors also acknowledge CNPq for financial support in special for the doctoral fellowship granted to G.S(CNPq Proc.140249/2017-6).AJFC acknowledge CNPq for research funding project#03847/2019-0.
文摘Oil spills and oil/water wastewater are among the great concerns regarding oil pollution.Existing technologies face many limitations and in some cases are responsible for causing secondary pollution,therefore there is as seek for environmental friendly solutions.Biomass,from which celluloses are highlighted,are being employed for oil/water separation or oil absorbents membranes.Usually,these membranes are obtained by freeze drying of CNF(cellulose nano-fibrils)suspensions followed by chemical modification for hydrophobization,which involves expensive process as chemical vapor deposition and expensive reactants as sylanes,turning these processes hardly scalable.Here,we produced a natural porous structure paper from eucalyptus pulp fibers modified by a dipping and heating process in a blocked diisocyanate solution.After the surface treatment,contact angle with water reached 144°and water absorption reduced seven times,keeping the good oil absorbance.The chemical modification process is simple to be performed and use a very low quantity of reactant estimated to be less than 0.1 wt%based on cellulose.The good mechanical properties of the material allows its use in non usual conditions which can be of great importance depending on the environmental conditions.
基金Programfor Changjiang Scholars and Innovative Research Teamin University,China(No.IRT0526)Shanghai Municipal Scientific Committee,China(No.08JC1400400)
文摘Two novel fluorinated acrylate monomers 4a and 4b containing perfluorohexyl group were designed and synthesized starting from 4-allylanisole and perfluorohexyl iodide.The monomers 4a and 4b were then copolymerized with octadecyl acrylate and 2-hydroxyethyl acrylate by emulsion polymerization to give copolymers PFA 1 and PFA 2 respectively.The co-polymers were characterized by FT-IR and their heat stability was measured by TGA.The surface properties of PFA 1 and PFA 2 were studied by applying on cotton fabrics.The treated cotton fabrics showed good water-repellent property,and the contact angles for water reached 142° for PFA 1 and 136° for PFA 2.
基金the National Natural Science Foundation and the Ministry of Education for financial support.
文摘A novel perfluorooctylated citric acid was synthesized successfully via allylation of triethyl citrate followed by perfluorocctylation, reduction and hydrolysis. The fabrics treated with this compound showed good oil repellent and moderate water repellent properties: the oil repellent rating and the water repellent score were 6 and 80 respectively. Even after 10 washing cycles, the repellent properties were kept at the same level. The finished fabrics also showed some wrinkle-resistant properties, and the dry wrinkle recovery angle was increased by 53° compared with untreated fabrics. The critical surface energy of the treated fabric surface was 20±1 mN/m. This multifunctional compound also showed good water solubility, which would be beneficial for the environmental protection.
基金supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2019MEM044)the National Natural Science Foundation of China (Grant No. 11704321)+1 种基金Yantai Science and Technology Plan Projects (Grant No. 2019XDHZ087)Graduate Innovation Foundation of Yantai University (Grant No. YDZD2129)。
文摘Traditional lubricant impregnated surfaces usually required fluorinated lubricants to achieve slippery oil repellency, but the lubricants infused were expensive and toxic and also suffered from limited stability because of their migrating, evaporating, and leaking during use. Herein, to address this issue, we fabricated a durably fluorine-free slippery oil-repellent hydrogel coating using water as the lubricant. Due to its enhanced water-binding affinity, water could wet the hydrogel completely and form a hydrated-water layer on the surface. The hydrated water layer could act as a lubricant to repel foreign oils, which allowed the hydrogel to display slippery oil-repellency in air, exhibit superoleophobicity underwater, and resist oil fouling upon oil immersion.The hydrogel kept its oil-repellent properties after mechanical tests as well as thermal and freezing treatments,demonstrating its durability. Thanks to its moisture absorption, the water lubricant layer could self-regenerate upon the lubricated water layer depletion through exposure to a humid environment. Exploiting it is water-attracting and oil repellency, the hydrogel coating was demonstrated as a versatile platform for oil/water separation, polymer/water separation, drag-reduction, and antifogging.
基金the Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science-Wuhan University(2019HLG02).
文摘Despite ample literature,the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified.A clear understanding of the surface runoff and erosion rates altered by wildfires and prescribed fires is beneficial to identify the most suitable post-fire treatment This study has carried out a combined analysis of the hydrological response of soil and its driving factors in burned forests of Central-Eastern Spain.The pine stands of these forests were subjected to both prescribed fire and wildfire,and,in the latter case,to post-fire treatment with mulching.Moreover,simple multi-regression models are proposed to predict runoff and erosion in the experi-mental conditions.In the case of the prescribed burning,the fire had a limited impact on runoff and erosion compared to the unburned areas,due to the limited changes in soil parameters.In contrast,the wildfire increased many-fold the runoff and erosion rates,but the mulching reduced the hydrological response of the burned soils,particularly for the first two-three rainfalls after the fire.The increase in runoff and erosion after the wildfire was associated to the removal of the vegetation cover,soil water repellency,and ash left by fire;the changes in water infiltration played a minor role on runoff and erosion.The multi-regression models developed for the prescribed fire were accurate to predict the post-fire runoff coefficients.However,these models were less reliable for predictions of the mean erosion rates.The predictions of erosion after wildfire and mulching were excellent,while those of runoff were not satisfactory(except for the mean values).These results are useful to better understand the relations among the hydrological effects of fire on one side and the main soil properties and covers on the other side.Moreover,the proposed prediction models are useful to support the planning activities of forest managers and hydrologists towards a more effective conservation of forest soils.