The low porosity and low permeability of tight oil reservoirs call for improvements in the current technologies for oil recovery.Traditional chemical solutions with large molecular size cannot effectively flow through...The low porosity and low permeability of tight oil reservoirs call for improvements in the current technologies for oil recovery.Traditional chemical solutions with large molecular size cannot effectively flow through the nanopores of the reservoir.In this study,the feasibility of Nanofluids has been investigated using a high pressure high temperature core-holder and nuclear magnetic resonance(NMR).The results of the experiments indicate that the specified Nanofluids can enhance the tight oil recovery significantly.The water and oil relative permeability curve shifts to the high water saturation side after Nanofluid flooding,thereby demonstrating an increase in the water wettability of the core.In the Nanofluid flooding process the oil recovery was enhanced by 15.1%,compared to waterflooding stage.The T2 spectra using the NMR show that after Nanofluid flooding,a 7.18%increment in oil recovery factor was gained in the small pores,a 4.9%increase in the middle pores,and a 0.29%increase in the large pores.These results confirm that the Nanofluids can improve the flow state in micro-sized pores inside the core and increase the ultimate oil recovery factor.展开更多
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or ca...Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or caprock, limited buoyancy effect, complex oil-gas-water distribution, without obvious oil-gas-water interfaces, and relatively low oil (gas) saturation. Based on the simulation experiments of oil accumulation in low-permeability sandstone (oil displacing water), we study the migration and accumulation characteristics of non-Darcy oil flow, and discuss the values and influencing factors of relative permeability which is a key parameter characterizing oil migration and accumulation in low-permeability sandstone. The results indicate that: 1) Oil migration (oil displacing water) in low- permeability sandstone shows non-Darcy percolation characteristics, and there is a threshold pressure gradient during oil migration and accumulation, which has a good negative correlation with permeability and apparent fluidity; 2) With decrease of permeability and apparent fluidity and increase of fluid viscosity, the percolation curve is closer to the pressure gradient axis and the threshold pressure gradient increases. When the apparent fluidity is more than 1.0, the percolation curve shows modified Darcy flow characteristics, while when the apparent fluidity up" non-Darcy percolation curve; 3) Oil-water is less than 1.0, the percolation curve is a "concave- two-phase relative permeability is affected by core permeability, fluid viscosity, apparent fluidity, and injection drive force; 4) The oil saturation of low- permeability sandstone reservoirs is mostly within 35%-60%, and the oil saturation also has a good positive correlation with the permeability and apparent fluidity.展开更多
A simulation experiment on the responses of maize (Zea mays L.) from the third leaf stage to maturity for different soil water levels (well-watered, moderately stressed, and severely stressed) was conducted by control...A simulation experiment on the responses of maize (Zea mays L.) from the third leaf stage to maturity for different soil water levels (well-watered, moderately stressed, and severely stressed) was conducted by controlling irrigation and using a mobile rain shelter in a neutral loam, meadow soil to determine the effects on leaf water status, membrane permeability and enzymatic antioxidant system for different growth stages. The results indicated that drought stress relied on drought intensity and duration, with more severe drought stress creating more serious effects on maize. Compared with well-watered conditions, during the silking and blister stages moderate stress did not significantly change the relative water content (RWC) and did change significantly the relative conductivity (RC) (P < 0.05) of the leaves; however, severe stress did significantly decrease (P < 0.01) the leaf RWC and increase (P < 0.01) membrane permeability (leaf relative conductivity). Furthermore, under severe drought stress antioxidant enzyme activities declined significantly (P < 0.01) in later stages, namely for superoxide dismutase (SOD) the tasseling and blister stages, for peroxidase (POD) the milk stage, and for catalase (CAT) during the tasseling, blister, and milk stages. Meanwhile, membrane lipid peroxidation (measured as malondialdehyde content) significantly increased (P < 0.01) in all stages.展开更多
Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por...Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.展开更多
Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–t...Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–throat structures affect oil transport capacity.In this paper,using finite element(FE)simulation and mathematical modeling,we calculated the hydrodynamic resistance for four pore–throat structure.In addition,the influence of pore throat structure on shale oil permeability is analyzed.According to the results,the hydrodynamic resistance of different pore throat structures can vary by 300%.The contribution of additional resistance caused by streamline bending is also in excess of 40%,even without slip length.Fur-thermore,Pore–throat structures can affect apparent permeability by more than 60%on the REV scale,and this influence increases with heterogeneity of pore size distribution,organic matter content,and organic matter number.Clearly,modeling shale oil flow requires consideration of porous–throat structure and additional resistance,otherwise oil recovery and flow capacity may be overestimated.展开更多
The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.D...The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.Due to its complex pore and throat structure,pronounced heterogeneity,and tight reservoir characteristics,the techniques for conventional oil and gas exploration and production face challenges in comprehensive implementation,also indicating that as a vital parameter for evaluating the physical properties of a reservoir,permeability cannot be effectively estimated.This study selects 21 tight sandstone samples from the Q area within the shale oil formations of Ordos Basin.We systematically conduct the experiments to measure porosity,permeability,ultrasonic wave velocities,and resistivity at varying confining pressures.Results reveal that these measurements exhibit nonlinear changes in response to effective pressure.By using these experimental data and effective medium model,empirical relationships between P-and S-wave velocities,permeability and resistivity and effective pressure are established at logging and seismic scales.Furthermore,relationships between P-wave impedance and permeability,and resistivity and permeability are determined.A comparison between the predicted permeability and logging data demonstrates that the impedance–permeability relationship yields better results in contrast to those of resistivity–permeability relationship.These relationships are further applied to the seismic interpretation of shale oil reservoir in the target layer,enabling the permeability profile predictions based on inverse P-wave impedance.The predicted results are evaluated with actual production data,revealing a better agreement between predicted results and logging data and productivity.展开更多
Biochar has been used as an environment-friendly enhancer to improve the hydraulic properties(e.g.suction and water retention)of soil.However,variations in densities alter the properties of the soil ebiochar mix.Such ...Biochar has been used as an environment-friendly enhancer to improve the hydraulic properties(e.g.suction and water retention)of soil.However,variations in densities alter the properties of the soil ebiochar mix.Such density variations are observed in agriculture(loosely compacted)and engineering(densely compacted)applications.The influence of biochar amendment on gas permeability of soil has been barely investigated,especially for soil with different densities.The major objective of this study is to investigate the water retention capacity,and gas permeability of biochar-amended soil(BAS)with different biochar contents under varying degree of compaction(DOC)conditions.In-house produced novel biochar was mixed with the soil at different amendment rates(i.e.biochar contents of 0%,5%and 10%).All BAS samples were compacted at three DOCs(65%,80%and 95%)in polyvinyl chloride(PVC)tubes.Each soil column was subjected to dryingewetting cycles,during which soil suction,water content,and gas permeability were measured.A simplified theoretical framework for estimating the void ratio of BAS was proposed.The experimental results reveal that the addition of biochar significantly decreased gas permeability kg as compared with that of bare soil(BS).However,the addition of 5%biochar is found to be optimum in decreasing kg with an increase of DOC(i.e.k_(g,65%)>k_(g,80%)>k_(g,95%))at a relatively low suction range(<200 kPa)because both biochar and compaction treatment reduce the connected pores.展开更多
Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified...Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified cellulosic material gained from spent coffee grounds as a tertiary adsorption treatment. The earth-alkaline metal ions and heavy metals were separated from the de-oiled produced water by addition of either sodium or potassium hydroxide in the presence of carbon dioxide or by direct addition of solid sodium carbonate. The resulting filtrate gave salt of industrial purity upon selective crystallization on evaporation.展开更多
Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s...Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.展开更多
This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil...This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil–water separation.The obtained ME-g-PLMA sponge had an excellent pore structure with superhydrophobic(water contact angle of 154°)and superoleophilic properties.It can absorb various types of oils up to 66–168 times its mass.The ME-g-PLMA sponge can continuously separate oil slicks in water by connecting a pump or separating oil underwater with a gravity-driven device.In addition,it maintained its highly hydrophobic properties even after long-term immersion in different corrosive solutions and repeated oil adsorption.The modified ME-g-PLMA sponge exhibited excellent separation properties and potential for oil spill cleanup.展开更多
Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.I...Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.展开更多
The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge wit...The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.展开更多
Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline ...Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.展开更多
Water cut is a key evaluation parameter for reservoir development evaluation. Relative permeability curve reflects reservoir characteristics and fluid characteristics. It is important to figure out the influence law o...Water cut is a key evaluation parameter for reservoir development evaluation. Relative permeability curve reflects reservoir characteristics and fluid characteristics. It is important to figure out the influence law of oil relative permeability on water cut. Based on the 269 relative permeability curves of Bohai oilfields, the distribution of oil index of Bohai oilfields were studied. On the basis, combined with Corey expression of relative permeability and fractional flow equation, the theoretical relationship between oil index and water cut increasing rate was established. Three end points of water cut increasing rate curve were proposed and the influence law between three end points and oil index was studied. The results show that the oil index has a linear relationship with three end points. When the value of water oil mobile ratio is large than 1, with the increase of oil index, maximum value of water cut increasing rate gradually increase. When the value of water oil mobile ratio is less than 10, oil index has great effect on recovery percent when water cut increasing rate reaches to the maximum value as well as water cut when water cut increasing rate reaches to the maximum value. The application of SS field shows that the theoretical value is consistent with the field data.展开更多
To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for f...To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly.展开更多
An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block o...An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block of the Shengtuo Oilfield has entered the stage of ultra-high water cut(97.2%).Poor adaptability of the well pattern,ineffective water injection cycle and low efficiency of engineering measures(such as workover,re-perforation and utilization of high-capacity pumps)are the significant problems in the ultra-high water-cut reservoir.In order to accurately describe the oil and water flow characteristics,relative permeability curves at high water injection multiple(injected pore volume)and a semiquantitative method is applied to perform fine reservoir simulation of the Sand group 3e7 in the Block.An accurate reservoir model is built and history matching is performed.The distribution characteristics of remaining oil in lateral and vertical directions are quantitatively simulated and analyzed.The results show that the numerical simulation considering relative permeability at high injection multiple can reflect truly the remaining oil distribution characteristics after water flooding in an ultrahigh water-cut stage.The distribution of remaining oil saturation can be mapped more accurately and quantitatively by using the‘four-points and five-types’classification method,providing a basis for potential tapping of various remaining oil types of oil reservoirs in late-stage of development with high water-cut.展开更多
In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utiliz...In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.展开更多
CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fractio...CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
基金Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)Grant Number(PLN201802).
文摘The low porosity and low permeability of tight oil reservoirs call for improvements in the current technologies for oil recovery.Traditional chemical solutions with large molecular size cannot effectively flow through the nanopores of the reservoir.In this study,the feasibility of Nanofluids has been investigated using a high pressure high temperature core-holder and nuclear magnetic resonance(NMR).The results of the experiments indicate that the specified Nanofluids can enhance the tight oil recovery significantly.The water and oil relative permeability curve shifts to the high water saturation side after Nanofluid flooding,thereby demonstrating an increase in the water wettability of the core.In the Nanofluid flooding process the oil recovery was enhanced by 15.1%,compared to waterflooding stage.The T2 spectra using the NMR show that after Nanofluid flooding,a 7.18%increment in oil recovery factor was gained in the small pores,a 4.9%increase in the middle pores,and a 0.29%increase in the large pores.These results confirm that the Nanofluids can improve the flow state in micro-sized pores inside the core and increase the ultimate oil recovery factor.
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
基金supported by the National Natural Science Foundation Project (No.40772088)the National Basic Research Program ("973" Program,Grant No. 2006CB202305)
文摘Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or caprock, limited buoyancy effect, complex oil-gas-water distribution, without obvious oil-gas-water interfaces, and relatively low oil (gas) saturation. Based on the simulation experiments of oil accumulation in low-permeability sandstone (oil displacing water), we study the migration and accumulation characteristics of non-Darcy oil flow, and discuss the values and influencing factors of relative permeability which is a key parameter characterizing oil migration and accumulation in low-permeability sandstone. The results indicate that: 1) Oil migration (oil displacing water) in low- permeability sandstone shows non-Darcy percolation characteristics, and there is a threshold pressure gradient during oil migration and accumulation, which has a good negative correlation with permeability and apparent fluidity; 2) With decrease of permeability and apparent fluidity and increase of fluid viscosity, the percolation curve is closer to the pressure gradient axis and the threshold pressure gradient increases. When the apparent fluidity is more than 1.0, the percolation curve shows modified Darcy flow characteristics, while when the apparent fluidity up" non-Darcy percolation curve; 3) Oil-water is less than 1.0, the percolation curve is a "concave- two-phase relative permeability is affected by core permeability, fluid viscosity, apparent fluidity, and injection drive force; 4) The oil saturation of low- permeability sandstone reservoirs is mostly within 35%-60%, and the oil saturation also has a good positive correlation with the permeability and apparent fluidity.
基金Project supported by the National Key Basic Research Support Foundation of China (No. G1999043407)the National Natural Science Foundation of China (No. 40231018)
文摘A simulation experiment on the responses of maize (Zea mays L.) from the third leaf stage to maturity for different soil water levels (well-watered, moderately stressed, and severely stressed) was conducted by controlling irrigation and using a mobile rain shelter in a neutral loam, meadow soil to determine the effects on leaf water status, membrane permeability and enzymatic antioxidant system for different growth stages. The results indicated that drought stress relied on drought intensity and duration, with more severe drought stress creating more serious effects on maize. Compared with well-watered conditions, during the silking and blister stages moderate stress did not significantly change the relative water content (RWC) and did change significantly the relative conductivity (RC) (P < 0.05) of the leaves; however, severe stress did significantly decrease (P < 0.01) the leaf RWC and increase (P < 0.01) membrane permeability (leaf relative conductivity). Furthermore, under severe drought stress antioxidant enzyme activities declined significantly (P < 0.01) in later stages, namely for superoxide dismutase (SOD) the tasseling and blister stages, for peroxidase (POD) the milk stage, and for catalase (CAT) during the tasseling, blister, and milk stages. Meanwhile, membrane lipid peroxidation (measured as malondialdehyde content) significantly increased (P < 0.01) in all stages.
文摘Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.
基金supported by the National Natural Science Foundation of China(52274056,U22B2075).
文摘Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–throat structures affect oil transport capacity.In this paper,using finite element(FE)simulation and mathematical modeling,we calculated the hydrodynamic resistance for four pore–throat structure.In addition,the influence of pore throat structure on shale oil permeability is analyzed.According to the results,the hydrodynamic resistance of different pore throat structures can vary by 300%.The contribution of additional resistance caused by streamline bending is also in excess of 40%,even without slip length.Fur-thermore,Pore–throat structures can affect apparent permeability by more than 60%on the REV scale,and this influence increases with heterogeneity of pore size distribution,organic matter content,and organic matter number.Clearly,modeling shale oil flow requires consideration of porous–throat structure and additional resistance,otherwise oil recovery and flow capacity may be overestimated.
基金supports from the National Natural Science Foundation of China(42104110,41974123,42174161,and 12334019)the Natural Science Foundation of Jiangsu Province(BK20210379,BK20200021)+1 种基金the Postdoctoral Science Foundation of China(2022M720989)the Fundamental Research Funds for the Central Universities(B210201032).
文摘The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.Due to its complex pore and throat structure,pronounced heterogeneity,and tight reservoir characteristics,the techniques for conventional oil and gas exploration and production face challenges in comprehensive implementation,also indicating that as a vital parameter for evaluating the physical properties of a reservoir,permeability cannot be effectively estimated.This study selects 21 tight sandstone samples from the Q area within the shale oil formations of Ordos Basin.We systematically conduct the experiments to measure porosity,permeability,ultrasonic wave velocities,and resistivity at varying confining pressures.Results reveal that these measurements exhibit nonlinear changes in response to effective pressure.By using these experimental data and effective medium model,empirical relationships between P-and S-wave velocities,permeability and resistivity and effective pressure are established at logging and seismic scales.Furthermore,relationships between P-wave impedance and permeability,and resistivity and permeability are determined.A comparison between the predicted permeability and logging data demonstrates that the impedance–permeability relationship yields better results in contrast to those of resistivity–permeability relationship.These relationships are further applied to the seismic interpretation of shale oil reservoir in the target layer,enabling the permeability profile predictions based on inverse P-wave impedance.The predicted results are evaluated with actual production data,revealing a better agreement between predicted results and logging data and productivity.
基金The authors would like to acknowledge the National Natural Science Foundation of China(Grant No.41907252)Shantou University Scientific Research Fund(Grant No.NTF17007)
文摘Biochar has been used as an environment-friendly enhancer to improve the hydraulic properties(e.g.suction and water retention)of soil.However,variations in densities alter the properties of the soil ebiochar mix.Such density variations are observed in agriculture(loosely compacted)and engineering(densely compacted)applications.The influence of biochar amendment on gas permeability of soil has been barely investigated,especially for soil with different densities.The major objective of this study is to investigate the water retention capacity,and gas permeability of biochar-amended soil(BAS)with different biochar contents under varying degree of compaction(DOC)conditions.In-house produced novel biochar was mixed with the soil at different amendment rates(i.e.biochar contents of 0%,5%and 10%).All BAS samples were compacted at three DOCs(65%,80%and 95%)in polyvinyl chloride(PVC)tubes.Each soil column was subjected to dryingewetting cycles,during which soil suction,water content,and gas permeability were measured.A simplified theoretical framework for estimating the void ratio of BAS was proposed.The experimental results reveal that the addition of biochar significantly decreased gas permeability kg as compared with that of bare soil(BS).However,the addition of 5%biochar is found to be optimum in decreasing kg with an increase of DOC(i.e.k_(g,65%)>k_(g,80%)>k_(g,95%))at a relatively low suction range(<200 kPa)because both biochar and compaction treatment reduce the connected pores.
文摘Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified cellulosic material gained from spent coffee grounds as a tertiary adsorption treatment. The earth-alkaline metal ions and heavy metals were separated from the de-oiled produced water by addition of either sodium or potassium hydroxide in the presence of carbon dioxide or by direct addition of solid sodium carbonate. The resulting filtrate gave salt of industrial purity upon selective crystallization on evaporation.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0702400)the National Natural Science Foundation of China (Grant No.52174050)+1 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ME088)the National Natural Science Foundation of Qingdao (Grant No.23-2-1-227-zyyd-jch)。
文摘Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.
文摘This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil–water separation.The obtained ME-g-PLMA sponge had an excellent pore structure with superhydrophobic(water contact angle of 154°)and superoleophilic properties.It can absorb various types of oils up to 66–168 times its mass.The ME-g-PLMA sponge can continuously separate oil slicks in water by connecting a pump or separating oil underwater with a gravity-driven device.In addition,it maintained its highly hydrophobic properties even after long-term immersion in different corrosive solutions and repeated oil adsorption.The modified ME-g-PLMA sponge exhibited excellent separation properties and potential for oil spill cleanup.
文摘Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.
基金Enterprise Horizontal Project(Project Contract No.2021K2450)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX22_1437).
文摘The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.
文摘Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.
文摘Water cut is a key evaluation parameter for reservoir development evaluation. Relative permeability curve reflects reservoir characteristics and fluid characteristics. It is important to figure out the influence law of oil relative permeability on water cut. Based on the 269 relative permeability curves of Bohai oilfields, the distribution of oil index of Bohai oilfields were studied. On the basis, combined with Corey expression of relative permeability and fractional flow equation, the theoretical relationship between oil index and water cut increasing rate was established. Three end points of water cut increasing rate curve were proposed and the influence law between three end points and oil index was studied. The results show that the oil index has a linear relationship with three end points. When the value of water oil mobile ratio is large than 1, with the increase of oil index, maximum value of water cut increasing rate gradually increase. When the value of water oil mobile ratio is less than 10, oil index has great effect on recovery percent when water cut increasing rate reaches to the maximum value as well as water cut when water cut increasing rate reaches to the maximum value. The application of SS field shows that the theoretical value is consistent with the field data.
基金Supported by Science Coordination New Project(2016KTCL01-12)
文摘To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly.
基金funded by SINOPEC Science and Technology Project P18080by National Energy Administration Research and Development Center Project.
文摘An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block of the Shengtuo Oilfield has entered the stage of ultra-high water cut(97.2%).Poor adaptability of the well pattern,ineffective water injection cycle and low efficiency of engineering measures(such as workover,re-perforation and utilization of high-capacity pumps)are the significant problems in the ultra-high water-cut reservoir.In order to accurately describe the oil and water flow characteristics,relative permeability curves at high water injection multiple(injected pore volume)and a semiquantitative method is applied to perform fine reservoir simulation of the Sand group 3e7 in the Block.An accurate reservoir model is built and history matching is performed.The distribution characteristics of remaining oil in lateral and vertical directions are quantitatively simulated and analyzed.The results show that the numerical simulation considering relative permeability at high injection multiple can reflect truly the remaining oil distribution characteristics after water flooding in an ultrahigh water-cut stage.The distribution of remaining oil saturation can be mapped more accurately and quantitatively by using the‘four-points and five-types’classification method,providing a basis for potential tapping of various remaining oil types of oil reservoirs in late-stage of development with high water-cut.
基金Supported by the National Science and Technology Major Project(2016ZX05029001)CNPC Science and Technology Project(2019D-4310)。
文摘In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.
基金The financial supports received from the National Natural Science Foundation of China(Nos.22178378,22127812)。
文摘CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.