Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties...Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.展开更多
Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a...Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.展开更多
Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwate...Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwater can destabilize the limestone-based surrounding rock.Thus,systematic research into the physicochemical properties and pore structure changes in the limestone under pressurized water is essential.Additionally,it is essential to develop an interpretable mathematical model to accurately depict how pressurized osmotic water weakens limestone.In this research,a specialized device was designed to simulate the process of osmotic laminar flow within limestone.Then,four main tests were conducted:mass loss,acoustic emission(AE),mercury intrusion porosimetry(MIP),and fluorescence analysis.Experimental results gained from tests led to the development of a“Particle-pore throat-water film”model.Proposed model explains water-induced physicochemical and pore changes in limestone under osmotic pressure and reveals evolutionary mechanisms as pressure increases.Based on experimental results and model,we found that osmotic pressure not only alters limestone composition but also affects pore throats larger than 0.1μm.Furthermore,osmotic pressure expands pore throats,enhancing pore structure uniformity,interconnectivity,and permeability.These effects are observed at a threshold of 7.5 MPa,where cohesive forces within the mineral lattice are surpassed,leading to the breakdown of erosion-resistant layer and a significant increase in hydrochemical erosion.展开更多
Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por...Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.展开更多
Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of ...Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of rock strength and its infuencing factors(water content,immersion time,and wetting–drying cycles).The strength of the rock mass decreases to varying degrees with water content,immersion time,and wetting–drying cycles depending on the rock mass type and mineral composition.The corresponding acoustic emission count and intensity and infrared radiation intensity also weaken accordingly.WRI enhances the plasticity of rock mass and reduces its brittleness.Various microscopic methods for studying the pore characterization and weakening mechanism of the WRI were compared and analyzed.Various methods should be adopted to study the pore evolution of WRI comprehensively.Microscopic methods are used to study the weakening mechanism of WRI.In future work,the mechanical parameters of rocks weakened under long-term water immersion(over years)should be considered,and more attention should be paid to how the laboratory scale is applied to the engineering scale.展开更多
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop...With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation.展开更多
To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom...To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom hole rock,before and after slotting are analyzed and the stress release mechanism of slotting is clarified.The results show that the stress release by slotting is due to the coupling of three factors:the relief of horizontal stress,the stress concentration zone distancing away from the cutting face,and the increase of pore pressure caused by rock mass expansion;The stress concentration increases the effective stress of rock along the radial distance from O.6R to 1R(R is the radius of the well),and the presence of groove completely releases the stress,it also allows the stress concentration zone to be pushed away from the cutting face,while significantly lowering the value of stresses in the area the drilling bit acting,the maximum stress release efficiency can reach 80%.The effect of slotting characteristics on release efficiency is obvious when the groove location is near the borehole wall.With the increase of groove depth,the stress release efficiency is significantly increased,and the release range of effective stress is enlarged along the axial direction.Therefore,the stress release method and results of simulations in this paper have a guiding significance for best-improving rock-breaking efficiency and further understanding the technique.展开更多
The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing ...The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves.展开更多
Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock ...Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock pressure influence fracture initiation,based on mass conservation,elasticity,and water-ice phase transition principles.A model for rock fracture initiation considering freezing temperature,uneven freezing expansion,in-situ stress,and lateral pressure was proposed based on fracture mechanics.Equations for stress intensity factors were developed and validated using the phase field method.The effects of rock elastic modulus anisotropy and critical fracture energy density on fracture initiation were also discussed.The results show that the values of KI and KII exhibit an upward trend as the freezing temperature,uneven expansion,in-situ stress,and lateral pressure increase.The uneven freezing expansion has the most significant influence on KI and KII values among these parameters.As the uneven freezing expansion coefficient increases to 0.5,the fracture initiation mode shifts from tensile fracture to shear fracture.As the lateral pressure coefficient increases to 1,the fracture initiation mode shifts from tensile fracture to shear fracture.Rock elastic modulus anisotropy causes fractures to propagate in a clockwise direction,forming a'butterfly'pattern.Critical fracture energy density an isotropy causes counterclockwise deviation in propagation direction,resulting in branching paths and an'H'-shaped pattern.展开更多
Based on analyses of experimental results of water jet drilling, the fluid motion law in rock pores and the tendency of energy distribution, the rock-breaking process under high pressure water jet drilling has been s...Based on analyses of experimental results of water jet drilling, the fluid motion law in rock pores and the tendency of energy distribution, the rock-breaking process under high pressure water jet drilling has been studied systematically. The research indicates that the main interaction between the rock and water jet is interface coupling, that the impacting load and the static pressure of the water jet act together to make the rock break, and that the stress wave is the main factor. Water jet drilling can be divided into two stages: At the initial stage, the stress wave plays the main role and most of the rock breaking takes place; at the later stage, the existing rock defects, for instance, micro-holes and micro-cracks, are propagated and merged to make macroscopic damage, and then the diameter of the jet-drilled hole is expanded.展开更多
This article summarized systematically the previous investigations on t he dielectric relaxation of wood, the main substances and extractives in wood at oven-dry state, and the dielectric relaxation based on the adso...This article summarized systematically the previous investigations on t he dielectric relaxation of wood, the main substances and extractives in wood at oven-dry state, and the dielectric relaxation based on the adsorbed water in w o od cell wall under equilibrium and non-equilibrium state. Moreover, some expect a tions for future research were proposed on this basis. The purpose of this artic le is to provide other researchers an overall understanding about the research i n this region, and further to promote the research onto a new and higher level.展开更多
One of the promising methods for rock cutting technology is the use of high-speed water jets.In order to improve the cutting capacity of water jets without increasing the hydraulic power of equipment,pulsed water jets...One of the promising methods for rock cutting technology is the use of high-speed water jets.In order to improve the cutting capacity of water jets without increasing the hydraulic power of equipment,pulsed water jets are basically used to increase the rock cutting efficiency.However,there are no mature recommendations for selection of rational parameters,and the relationship between indicators of rock cutting efficiency and parameters of pulsed water jet is still not established.In this context,we aimed at developing a generalized equation for calculating rock cutting efficiency,in which all the major parameters in consideration of rock cutting process are included.Then,a calibration of the rational parameters of rock cutting by pulsed water jets was conducted.The results are likely helpful for increasing productivity and reducing energy consumption.展开更多
Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlight...Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.展开更多
The new type hot water sedimentary rock -- magnetite-fluorite rock occurs as quasi-layers in flat parts of contact zones between rock body and strata in Bamianshan of Changshan County, Zhejiang Province, China. The ma...The new type hot water sedimentary rock -- magnetite-fluorite rock occurs as quasi-layers in flat parts of contact zones between rock body and strata in Bamianshan of Changshan County, Zhejiang Province, China. The main mineral assemblage is fluorite+magnetite+cassiterite. The rock shows typical laminated structure and obvious mosaic texture. Its formation temperature is between 123℃-160℃, averaging at 142℃. The major chemical composition of the rock includes CaF2, SiO2, Al2O3, FeO, and Fe2O3; the high-content microelement association includes W, Sn, Be, Rb, Sr, S, and CI; and the total content of REE is low (∑REE between 35.34×10^-6-38.35×10^-6), showing LREE enrichment type of distribution pattern. Diagenesis: driven by the tectonic stress, the formation water heated in the deep strata had moved along the fissures or fractures in strata and had extracted components from the strata on the way, and finally stagnated in the flat parts of contact zones between rock body and strata. With drop in temperature, magnetite and fluorite were separated from the hot water and precipitated alternately, forming this hot water sedimentary rock with new type mineralogical composition, typical laminated structure, obvious mosaic texture and sub-horizontal occurrence. The characteristics of the new type mineralogical composition, sedimentary tectonic environment and chemical composition are different from that of the well-known traditional hydrothermai sedimentary rocks.展开更多
This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
Based on an analysis of the factors affecting rock breaking and the coupling between rock and fluid during water jet drilling, the rock damage model and the damage-coupling model suitable for the whole rock breaking p...Based on an analysis of the factors affecting rock breaking and the coupling between rock and fluid during water jet drilling, the rock damage model and the damage-coupling model suitable for the whole rock breaking process under the water jet is established with continuous damage mechanics and micro-damage mechanics. The evolvement of rock damage during swirling water jet drilling is simulated on a nonlinear FEM and dynamic rock damage model, and a decoupled method is used to analyze the rock damage. The numerical results agree with the test results to a high degree, which shows the rock breaking ability of the swirling water jet is strong. This is because the jet particle velocity of the swirling water jet is three-dimensional, and its rock-breaking manner mainly has a slopping impact. Thus, the interference from returning fluid is less. All these aspects make it easy to draw and shear the rock surface. The rock breaking process is to break out an annular on the rock surface first, and then the annular develops quickly in both the radial and axial directions, the last part of the rock broken hole bottom is a protruding awl. The advantage of the swirling water jet breaking rock is the heavy breaking efficiency,large breaking area and less energy used to break rock per unite volume, so the swirling water jet can drill in a hole of a large diameter.展开更多
In the process of rock breaking, the conical pick bears great cutting force and wear, as a result, high-pressure water jet technology is used to assist with cutting. However, the effect of the water jet position has n...In the process of rock breaking, the conical pick bears great cutting force and wear, as a result, high-pressure water jet technology is used to assist with cutting. However, the effect of the water jet position has not been studied for rock breaking using a pick. Therefore, the models of rock breaking with different configuration modes of the water jet are established based on SPH combined with FEM. The effect of the water jet pressure, distance between the jet and the pick bit, and cutting depth on the rock breaking performance as well as a comparison of the tension and compression stress are studied via simulation; the simulation results are verified by experiments. The numerical and experimental results indicate that the decrease in the rates of the pick force obviously increases from 25 MPa to 40 MPa, but slowly after 40 MPa, and the optimal distance between the jet and the pick bit is 2 mm under the JFP and JSP modes. The JCP mode is proved the best, followed by the modes of JRP and JFP, and the worst mode is JSP. The decrease in the rates of the pick force of the JCP, JRP, JFP, and JSP modes are up to 30.96%, 28.96%, 33.46%, 28.17%, and 25.42%, respectively, in experiment. Moreover, the JSP mode can be regarded as a special JFP model when the distance between the pick-tip and the jet impact point is 0 mm. This paper has a dominant capability in introducing new numerical and experimental method for the study of rock breaking assisted by water jet and electing the best water jet position from four different configuration modes.展开更多
Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the com...Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock.展开更多
Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush...Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review.展开更多
Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some d...Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some drilling wells of deep water area close to the central depression belt, Miocene marine source rocks with better organic matter abundance and hydrocarbon generation have been found, which have achieved better source rock standard based on the analysis of geochemical charac- teristics. Although there are no exploratory wells in deep water area of the research region, through the comparative analysis of geochemical data of several typical exploratory wells respectively from shallow water area in the basin, central depression belt margin in deep-water area of the basin and Site 1148 of deep sea drilling in the South China Sea Basin, it reveals that the tendency of the quality of source rocks becomes positive gradually from delta to bathyal environment, which then becomes negative as in deep oceanic environment. Owing to the lack of terrestrial organic matter input, the important controlling factors of Miocene marine source rocks in the Qiongdongnan Basin are ocean productivity and preservation conditions of organic matter. The element geochemistry data indicate that the tendency of the paleoproductivity and the preservation conditions of organic matter become positive as water depth increase from shallow area to bathyal area close to central depression belt. So it is speculated that there must exist high quality source rocks in the central depression area where the preservation conditions of organic matter are much better. Besides, in theory, in oxygen-poor zone of oceanic environment at the water depth 400–1 000 m, the preservation conditions of organic matter are well thus forming high-quality marine source rocks. The result- ing speculation, it is reasonable to consider that there are high hydrocarbon generation potential source rocks in bathyal environment of the Qiongdongnan Basin, especially at the water depth 400– 1 000 m.展开更多
基金National Natural Science Foundation of China (No. 52204101)Natural Science Foundation of Shandong Province (No. ZR2022QE137)Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in CUMTB (No. SKLGDUEK2023).
文摘Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.
基金Project(52109132)supported by the National Natural Science Foundation of ChinaProject(ZR2020QE270)supported by the Natural Science Foundation of Shandong Province,China+1 种基金Project(JMDPC202204)supported by State Key Laboratory of Strata Intelligent Control,Green Mining Co-founded by Shandong Province and the Ministry of Science and TechnologyShandong University of Science and Technology,China。
文摘Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.
基金funded by the National Key R&D Program of China(2023YFC3806800).
文摘Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwater can destabilize the limestone-based surrounding rock.Thus,systematic research into the physicochemical properties and pore structure changes in the limestone under pressurized water is essential.Additionally,it is essential to develop an interpretable mathematical model to accurately depict how pressurized osmotic water weakens limestone.In this research,a specialized device was designed to simulate the process of osmotic laminar flow within limestone.Then,four main tests were conducted:mass loss,acoustic emission(AE),mercury intrusion porosimetry(MIP),and fluorescence analysis.Experimental results gained from tests led to the development of a“Particle-pore throat-water film”model.Proposed model explains water-induced physicochemical and pore changes in limestone under osmotic pressure and reveals evolutionary mechanisms as pressure increases.Based on experimental results and model,we found that osmotic pressure not only alters limestone composition but also affects pore throats larger than 0.1μm.Furthermore,osmotic pressure expands pore throats,enhancing pore structure uniformity,interconnectivity,and permeability.These effects are observed at a threshold of 7.5 MPa,where cohesive forces within the mineral lattice are surpassed,leading to the breakdown of erosion-resistant layer and a significant increase in hydrochemical erosion.
文摘Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.
基金the National Natural Science Foundation of China(52104155)Natural Science Foundation of Beijing(8212032)Fundamental Research Funds for the Central Universities(2023YQNY).
文摘Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of rock strength and its infuencing factors(water content,immersion time,and wetting–drying cycles).The strength of the rock mass decreases to varying degrees with water content,immersion time,and wetting–drying cycles depending on the rock mass type and mineral composition.The corresponding acoustic emission count and intensity and infrared radiation intensity also weaken accordingly.WRI enhances the plasticity of rock mass and reduces its brittleness.Various microscopic methods for studying the pore characterization and weakening mechanism of the WRI were compared and analyzed.Various methods should be adopted to study the pore evolution of WRI comprehensively.Microscopic methods are used to study the weakening mechanism of WRI.In future work,the mechanical parameters of rocks weakened under long-term water immersion(over years)should be considered,and more attention should be paid to how the laboratory scale is applied to the engineering scale.
基金the project of POWERCHINA Chengdu Engineering Corporation Limited,Power China under Grant No.P46220the Natural Science Foundation of Sichuan,China under Grant No.2022NSFSC0425the Science and Technology Department of Sichuan Province under Grant No.2021YJ0053。
文摘With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation.
基金support of the National Key Research and Development Program of China(2021YFE0111400)the Shandong provincial natural science foundation(No.ZR2019MEE120)the horizon programme of the EU's funding of the ORCH YD project,EU-H2020(101006752-ORCHYD).
文摘To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom hole rock,before and after slotting are analyzed and the stress release mechanism of slotting is clarified.The results show that the stress release by slotting is due to the coupling of three factors:the relief of horizontal stress,the stress concentration zone distancing away from the cutting face,and the increase of pore pressure caused by rock mass expansion;The stress concentration increases the effective stress of rock along the radial distance from O.6R to 1R(R is the radius of the well),and the presence of groove completely releases the stress,it also allows the stress concentration zone to be pushed away from the cutting face,while significantly lowering the value of stresses in the area the drilling bit acting,the maximum stress release efficiency can reach 80%.The effect of slotting characteristics on release efficiency is obvious when the groove location is near the borehole wall.With the increase of groove depth,the stress release efficiency is significantly increased,and the release range of effective stress is enlarged along the axial direction.Therefore,the stress release method and results of simulations in this paper have a guiding significance for best-improving rock-breaking efficiency and further understanding the technique.
基金supported by the National Natural Science Foundation of China(Grant Nos.42171135 and 12262009)the“CUG Scholar”Scientific Research Funds at China University of Geosciences(Wuhan)(Project No.2022098).
文摘The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves.
基金This study was funded by the National Natural Science Foundation of China(No.51978039).
文摘Water freezing in rock fractures causes volumetric expansion and fracture development through frost heaving.This study introduces a novel analytical model to investigate how uneven freezing force and surrounding rock pressure influence fracture initiation,based on mass conservation,elasticity,and water-ice phase transition principles.A model for rock fracture initiation considering freezing temperature,uneven freezing expansion,in-situ stress,and lateral pressure was proposed based on fracture mechanics.Equations for stress intensity factors were developed and validated using the phase field method.The effects of rock elastic modulus anisotropy and critical fracture energy density on fracture initiation were also discussed.The results show that the values of KI and KII exhibit an upward trend as the freezing temperature,uneven expansion,in-situ stress,and lateral pressure increase.The uneven freezing expansion has the most significant influence on KI and KII values among these parameters.As the uneven freezing expansion coefficient increases to 0.5,the fracture initiation mode shifts from tensile fracture to shear fracture.As the lateral pressure coefficient increases to 1,the fracture initiation mode shifts from tensile fracture to shear fracture.Rock elastic modulus anisotropy causes fractures to propagate in a clockwise direction,forming a'butterfly'pattern.Critical fracture energy density an isotropy causes counterclockwise deviation in propagation direction,resulting in branching paths and an'H'-shaped pattern.
文摘Based on analyses of experimental results of water jet drilling, the fluid motion law in rock pores and the tendency of energy distribution, the rock-breaking process under high pressure water jet drilling has been studied systematically. The research indicates that the main interaction between the rock and water jet is interface coupling, that the impacting load and the static pressure of the water jet act together to make the rock break, and that the stress wave is the main factor. Water jet drilling can be divided into two stages: At the initial stage, the stress wave plays the main role and most of the rock breaking takes place; at the later stage, the existing rock defects, for instance, micro-holes and micro-cracks, are propagated and merged to make macroscopic damage, and then the diameter of the jet-drilled hole is expanded.
文摘This article summarized systematically the previous investigations on t he dielectric relaxation of wood, the main substances and extractives in wood at oven-dry state, and the dielectric relaxation based on the adsorbed water in w o od cell wall under equilibrium and non-equilibrium state. Moreover, some expect a tions for future research were proposed on this basis. The purpose of this artic le is to provide other researchers an overall understanding about the research i n this region, and further to promote the research onto a new and higher level.
文摘One of the promising methods for rock cutting technology is the use of high-speed water jets.In order to improve the cutting capacity of water jets without increasing the hydraulic power of equipment,pulsed water jets are basically used to increase the rock cutting efficiency.However,there are no mature recommendations for selection of rational parameters,and the relationship between indicators of rock cutting efficiency and parameters of pulsed water jet is still not established.In this context,we aimed at developing a generalized equation for calculating rock cutting efficiency,in which all the major parameters in consideration of rock cutting process are included.Then,a calibration of the rational parameters of rock cutting by pulsed water jets was conducted.The results are likely helpful for increasing productivity and reducing energy consumption.
文摘Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.
文摘The new type hot water sedimentary rock -- magnetite-fluorite rock occurs as quasi-layers in flat parts of contact zones between rock body and strata in Bamianshan of Changshan County, Zhejiang Province, China. The main mineral assemblage is fluorite+magnetite+cassiterite. The rock shows typical laminated structure and obvious mosaic texture. Its formation temperature is between 123℃-160℃, averaging at 142℃. The major chemical composition of the rock includes CaF2, SiO2, Al2O3, FeO, and Fe2O3; the high-content microelement association includes W, Sn, Be, Rb, Sr, S, and CI; and the total content of REE is low (∑REE between 35.34×10^-6-38.35×10^-6), showing LREE enrichment type of distribution pattern. Diagenesis: driven by the tectonic stress, the formation water heated in the deep strata had moved along the fissures or fractures in strata and had extracted components from the strata on the way, and finally stagnated in the flat parts of contact zones between rock body and strata. With drop in temperature, magnetite and fluorite were separated from the hot water and precipitated alternately, forming this hot water sedimentary rock with new type mineralogical composition, typical laminated structure, obvious mosaic texture and sub-horizontal occurrence. The characteristics of the new type mineralogical composition, sedimentary tectonic environment and chemical composition are different from that of the well-known traditional hydrothermai sedimentary rocks.
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
文摘Based on an analysis of the factors affecting rock breaking and the coupling between rock and fluid during water jet drilling, the rock damage model and the damage-coupling model suitable for the whole rock breaking process under the water jet is established with continuous damage mechanics and micro-damage mechanics. The evolvement of rock damage during swirling water jet drilling is simulated on a nonlinear FEM and dynamic rock damage model, and a decoupled method is used to analyze the rock damage. The numerical results agree with the test results to a high degree, which shows the rock breaking ability of the swirling water jet is strong. This is because the jet particle velocity of the swirling water jet is three-dimensional, and its rock-breaking manner mainly has a slopping impact. Thus, the interference from returning fluid is less. All these aspects make it easy to draw and shear the rock surface. The rock breaking process is to break out an annular on the rock surface first, and then the annular develops quickly in both the radial and axial directions, the last part of the rock broken hole bottom is a protruding awl. The advantage of the swirling water jet breaking rock is the heavy breaking efficiency,large breaking area and less energy used to break rock per unite volume, so the swirling water jet can drill in a hole of a large diameter.
基金Supported by National Natural Science Foundation of China(Grant No.51375478)the Fundamental Research Funds for the Central Universities,China(Grant No.2014ZDPY12)the Priority Academic Program Development of Jiangsu High Education Institute of China
文摘In the process of rock breaking, the conical pick bears great cutting force and wear, as a result, high-pressure water jet technology is used to assist with cutting. However, the effect of the water jet position has not been studied for rock breaking using a pick. Therefore, the models of rock breaking with different configuration modes of the water jet are established based on SPH combined with FEM. The effect of the water jet pressure, distance between the jet and the pick bit, and cutting depth on the rock breaking performance as well as a comparison of the tension and compression stress are studied via simulation; the simulation results are verified by experiments. The numerical and experimental results indicate that the decrease in the rates of the pick force obviously increases from 25 MPa to 40 MPa, but slowly after 40 MPa, and the optimal distance between the jet and the pick bit is 2 mm under the JFP and JSP modes. The JCP mode is proved the best, followed by the modes of JRP and JFP, and the worst mode is JSP. The decrease in the rates of the pick force of the JCP, JRP, JFP, and JSP modes are up to 30.96%, 28.96%, 33.46%, 28.17%, and 25.42%, respectively, in experiment. Moreover, the JSP mode can be regarded as a special JFP model when the distance between the pick-tip and the jet impact point is 0 mm. This paper has a dominant capability in introducing new numerical and experimental method for the study of rock breaking assisted by water jet and electing the best water jet position from four different configuration modes.
基金the Natural Science Foundation of Jiangsu Province(No.BK20141130)the Fundamental Research Funds for the Central Universities(No.2014QNB27)
文摘Based on deformation and failure characteristics of the second belt conveyor roadway at level II of Zhuxianzhuang coal mine, laboratory experiments, numerical calculation and field test were adopted to analyze the composition and microstructure of mudstone, the law of mudstone hydration and its strength weakening induced by water, the characteristics of surrounding rock deformation and failure under the action of confined water. Results showed that montmorillonite clay minerals accounted for as much as 76% of mudstone, with a large number of pores existing in the microstructure. Besides, as the molecular structure of montmorillonite changed, mudstone microstructure damage occurred with the macroscopic manifestation of its theological instability. Weakening degree of confined water on residual strength of mudstone was almost 50%. The instability mechanism of soft rock roadway caused by high confined water is that surrounding rock circulates the process of "fracture-seepage-mud ding-closed" twice, which weakens its strength and leads to roadway instability. A combined support technology, namely the, "high-toughness sealing layer + hollow grouting cables + full-length anchoring bolts with deep borehole" was proposed. Based on field observation, the soft rock roadway was controlled effectively, which also verified the effectiveness of new control technology for surrounding rock.
基金supported by the National Science Foundation for Excellent Young researchers of China(52122404)the National Natural Science Foundation of China(41977238)the Fundamental Research Funds for the Central Universities(2021GJZPY14 and 2021YCPY0101).
文摘Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review.
基金The Major State Basic Research Development Program (973 Program) under contract No. 2009CB219402
文摘Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some drilling wells of deep water area close to the central depression belt, Miocene marine source rocks with better organic matter abundance and hydrocarbon generation have been found, which have achieved better source rock standard based on the analysis of geochemical charac- teristics. Although there are no exploratory wells in deep water area of the research region, through the comparative analysis of geochemical data of several typical exploratory wells respectively from shallow water area in the basin, central depression belt margin in deep-water area of the basin and Site 1148 of deep sea drilling in the South China Sea Basin, it reveals that the tendency of the quality of source rocks becomes positive gradually from delta to bathyal environment, which then becomes negative as in deep oceanic environment. Owing to the lack of terrestrial organic matter input, the important controlling factors of Miocene marine source rocks in the Qiongdongnan Basin are ocean productivity and preservation conditions of organic matter. The element geochemistry data indicate that the tendency of the paleoproductivity and the preservation conditions of organic matter become positive as water depth increase from shallow area to bathyal area close to central depression belt. So it is speculated that there must exist high quality source rocks in the central depression area where the preservation conditions of organic matter are much better. Besides, in theory, in oxygen-poor zone of oceanic environment at the water depth 400–1 000 m, the preservation conditions of organic matter are well thus forming high-quality marine source rocks. The result- ing speculation, it is reasonable to consider that there are high hydrocarbon generation potential source rocks in bathyal environment of the Qiongdongnan Basin, especially at the water depth 400– 1 000 m.