期刊文献+
共找到2,148篇文章
< 1 2 108 >
每页显示 20 50 100
Isotope Tracking of Surface Water Groundwater Interaction in the Beninese Part of the Iullemeden Aquifer System
1
作者 Houégnon Géraud Vinel Gbewezoun Samuel Yao Ganyaglo +4 位作者 Abdoukarim Alassane Samuel Boakye Dampare Gaya Salifou Orou Pete Alou Moussa Boukari Daouda Mama 《Journal of Water Resource and Protection》 CAS 2024年第7期489-501,共13页
The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer Sys... The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer System. In that framework, an innovative approach based on the application of the Bayesian Mixing Model (MixSIAR) analysis on water isotopes (oxygen-18, deuterium and tritium) was performed. Moreover, to assess the relevance of the model outputs, Pearson’s correlation and Principal Component Analysis (PCA) have been done. A complex relationship between surface water and groundwater has been found. Sixty percent (60%) of groundwater samples are made of more than 70% river water and rainwater;while 31.25% of surface water samples are made of about 84% groundwater. To safeguard sustainable water resources for the well-being of the local communities, surface water and groundwater must be managed as a unique component in the Kandi basin. 展开更多
关键词 BENIN West Africa Kandi basin Iullemeden Aquifer System Surface water Groundwater interaction
下载PDF
Study on interaction between the coastal water, shelf water and Kuroshio water in the Huanghai Sea and East China Sea 被引量:15
2
作者 Binghuo Guo, Xiaomin Hu, Xuejun Xiong, Renfeng Ge First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2003年第3期351-367,共17页
The main processes of interaction between the coastal water, shelf water and Kuroshio water in the Huanghai Sea (HS) and East China Sea (ECS) are analyzed based on the observation and study results in recent years. Th... The main processes of interaction between the coastal water, shelf water and Kuroshio water in the Huanghai Sea (HS) and East China Sea (ECS) are analyzed based on the observation and study results in recent years. These processes include the intrusion of the Kuroshio water into the shelf area of the ECS, the entrainment of the shelf water into the Kuroshio, the seasonal process in the southern shelf area of the ECS controlled alternatively by the Taiwan Strait water and the Kuroshio water intruding into the shelf area, the interaction between the Kuroshio branch water, shelf mixed water and modified coastal water in the northeastern ECS, the water-exchange between the HS and ECS and the spread of the Changjiang diluted water. 展开更多
关键词 Huanghai Sea East China Sea coastal water shelf water Kuroshio water interaction
下载PDF
InteractionoftheKuroshiowaterandshelfwaterintheTsushimaCurrentregioninsummer 被引量:6
3
作者 Guo Binghuo Heung-Jae Lie and Jae Hak Lee2( Received September 20, 1997 accepted October 25, 1997) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1998年第3期277-292,共16页
The separation of the Kuroshio water in the northeastern East China Sea and its interaction with the shelfwater are analysed on the basis of CTD data and the observations of 11 satellite-tracked surface drifters condu... The separation of the Kuroshio water in the northeastern East China Sea and its interaction with the shelfwater are analysed on the basis of CTD data and the observations of 11 satellite-tracked surface drifters conducted bythe R/V Onnuri of Korea Ocean Research & Development institute during August 25 - September 7, 1994 and thenthe formation process of the Tsushima Current in summer is also discussed. 展开更多
关键词 Korea water shelf water interaction
下载PDF
Study on the Interaction of Water Waves with Semi-Circular Breakwater 被引量:5
4
作者 JIA Donghua Engineer, The First Design Institute of Navigation Engineering, Ministry of Communications of China, Tianjin 300222, P. R. China. 《China Ocean Engineering》 SCIE EI 1999年第1期73-80,共8页
The present study investigates the interaction of steep waves with semi-circular breakwater with the complex plane's Cauchy boundary integral theorem. The boundary integral method is used to transform the calculat... The present study investigates the interaction of steep waves with semi-circular breakwater with the complex plane's Cauchy boundary integral theorem. The boundary integral method is used to transform the calculation in fluid domain into its boundary alone. In the calculation the computation domain is moved with the propagation of waves. A numerical solution is obtained for incident Stokes waves passing the submerged obstacles. This method has been extended to the calculation of wave run-up on a slope for estimating wave overtopping. 展开更多
关键词 semi-circular breakwater water waves interaction Cauchy boundary integral
下载PDF
Interactions of Water Management and Nitrogen Fertilizer on Nitrogen Absorption and Utilization in Rice 被引量:4
5
作者 WANG Shao-hua, CAO Wei-xing, DING Yan-feng, TIAN Yong-chao and JIANG Dong (Key Laboratory of Crop Growth Regulation, Ministry of Agriculture / Nanjing Agricultural University, Nanjing 210095, P.R.China) 《Agricultural Sciences in China》 CAS CSCD 2003年第10期1091-1096,共6页
The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw... The interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization were studied in rice with Wuxiangjing9 (japonica). The results showed that the nitrogen uptake and remaining in straw increased and the percentage of nitrogen translocation (PNT) from vegetative organs, nitrogen dry matter production efficiency (NDMPE) and nitrogen grain production efficiency (NGPE) decreased with nitrogen increasing. The nitrogen uptake and NGPE decreased when severe water stressed. However, rice not only decreased the nitrogen uptake but also increased the PNT from vegetative organs, NDMPE and NGPE when mild water stressed. There were obvious interactions between nitrogen fertilizer and water management, such as with water stress increasing the effect of nitrogen on increasing nitrogen uptake was reduced and that on decreasing NDMPE was intensified. 展开更多
关键词 RICE Soil water management Application Nitrogen fertilizer interaction
下载PDF
Torsional Characteristics of Single Walled Carbon Nanotube with Water Interactions by Using Molecular Dynamics Simulation 被引量:3
6
作者 V.Vijayaraghavan C.H.Wong 《Nano-Micro Letters》 SCIE EI CAS 2014年第3期268-279,共12页
The torsional characteristics of single walled carbon nanotube(SWCNT) with water interactions are studied in this work using molecular dynamics simulation method. The torsional properties of carbon nanotubes(CNTs) in ... The torsional characteristics of single walled carbon nanotube(SWCNT) with water interactions are studied in this work using molecular dynamics simulation method. The torsional properties of carbon nanotubes(CNTs) in a hydrodynamic environment such as water are critical for its key role in determining the lifetime and stability of CNT based nano-fluidic devices. The effect of chirality, defects and the density of water encapsulation is studied by subjecting the SWCNT to torsion. The findings show that the torsional strength of SWCNT decreases due to interaction of water molecules and presence of defects in the SWCNT. Additionally,for the case of water molecules encapsulated inside SWCNT, the torsional response depends on the density of packing of water molecules. Our findings and conclusions obtained from this paper is expected to further compliment the potential applications of CNTs as promising candidates for applications in nano-biological and nano-fluidic devices. 展开更多
关键词 Carbon nanotube water interaction TORSION water encapsulation Nano-fluid Molecular dynamics
下载PDF
Strength weakening and its micromechanism in water–rock interaction,a short review in laboratory tests 被引量:5
7
作者 Cun Zhang Qingsheng Bai +3 位作者 Penghua Han Lei Wang Xiaojie Wang Fangtian Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期18-32,共15页
Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of ... Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of rock strength and its infuencing factors(water content,immersion time,and wetting–drying cycles).The strength of the rock mass decreases to varying degrees with water content,immersion time,and wetting–drying cycles depending on the rock mass type and mineral composition.The corresponding acoustic emission count and intensity and infrared radiation intensity also weaken accordingly.WRI enhances the plasticity of rock mass and reduces its brittleness.Various microscopic methods for studying the pore characterization and weakening mechanism of the WRI were compared and analyzed.Various methods should be adopted to study the pore evolution of WRI comprehensively.Microscopic methods are used to study the weakening mechanism of WRI.In future work,the mechanical parameters of rocks weakened under long-term water immersion(over years)should be considered,and more attention should be paid to how the laboratory scale is applied to the engineering scale. 展开更多
关键词 water–rock interaction Weakening mechanism water content Immersion time Wetting–drying cycles Microscopic methods
下载PDF
Computation of Ship Hydrodynamic Interaction Forces in Restricted Waters using Potential Theory 被引量:8
8
作者 Xueqian Zhou Serge Sutulo C. Guedes Soares 《Journal of Marine Science and Application》 2012年第3期265-275,共11页
A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid bou... A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid boundaries including the seabed. A peculiarity of the proposed implementation is the application of the so-called "moving-patch" method for simulating steady boundaries of large extensions. The method is based on an assumption that at any moment just the part of the boundary ("moving patch") which lies close to the interacting ship is significant for the near-field interaction. For a specific case of the fiat bottom, comparative computations were performed to determine optimal dimensions of the patch and of the constituting panels based on the trade-off between acceptable accuracy and reasonable efficiency. The method was applied to estimate the sway force on a ship hull moving obliquely across a dredged channel. The method was validated for a case of ship-to-ship interaction when tank data were available. This study also contains a description of a newly developed spline approximation algorithm necessary for creating consistent discretizations of ship hulls with various degrees of refinement. 展开更多
关键词 ship hydrodynamic interaction restricted waters moving panelled patch method potential theory
下载PDF
Analysis on the Interaction of Parameters of Single-contaminant Regeneration Recycling Water Systems 被引量:4
9
作者 白洁 冯霄 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第1期21-25,共5页
Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararnet... Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararneters in this article. Based on these extending methods, the effect of varying freshwater consumption and regenerated water flow rate on the optimizing results are investigated. The interactions of parameters of regeneration recycling systems are summarized. Finally, all the conclusions are illustrated from the results of mathematical programming through an example. 展开更多
关键词 water system regeneration recycling graphical method mathematical prograrrmung interaction ot parameters
下载PDF
Gneiss-Water Interaction and Water Evolution During the Early Stages of Dissolution Experiments at Room Temperature 被引量:1
10
作者 朱义年 Ingrid Stober Kurt Bucher 《Chinese Journal Of Geochemistry》 EI CAS 2003年第4期302-312,共11页
Gneiss\|distilled water interaction at room temperature was investigated with batch\|reactors to study water\|rock reaction and geochemical evolution of the aqueous phase with time. The ion concentrations in water wer... Gneiss\|distilled water interaction at room temperature was investigated with batch\|reactors to study water\|rock reaction and geochemical evolution of the aqueous phase with time. The ion concentrations in water were controlled not only by the dissolution of primary minerals, but also by the precipitation of secondary minerals. The decreasing fraction sizes of gneiss could favor dissolution and precipitation simultaneously. Ca\+\{2+\} and K\++ were the major cations, and HCO\+-\-3 was the major anion in water. All the ions except Ca\+\{2+\} increased in concentration with time. The Ca\+\{2+\} release from the rock to the aqueous phase was initially much faster than the release of K\++, Na\++ and Mg\+\{2+\}. But after about 5-24 hours, the Ca\+\{2+\} concentrations in water decreased very slowly with time and became relatively stable. During the experiment, the water varied from the Ca\|(K)\|HCO\-3\|type water to the K\|Ca\|HCO\-3\|type water, and then to the K\|(Ca,Na)\|HCO\-3\|type water. The water\|gneiss interaction was dominated by the dissolution of K\|feldspar in the solution. The remaining secondary minerals were mainly kaolinite, illite and K(Mg)\|mica. 展开更多
关键词 gneLss water interaction water evolufion
下载PDF
Elastoplastic pipe-soil interaction analyses of partially-supported jointed water mains 被引量:4
11
作者 Yu SHAO Tu-qiao ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第11期1497-1506,共10页
Water distribution networks are essential components of water supply systems. The combination of pipe structural deterioration and mechanics leads to the failure of pipelines. A physical model for estimating the pipe ... Water distribution networks are essential components of water supply systems. The combination of pipe structural deterioration and mechanics leads to the failure of pipelines. A physical model for estimating the pipe failure must include both the pipe deterioration model and mechanics model. Winkler pipe-soil interaction (WPSI), an analytical mechanics model developed by Rajani and Tesfamariam (2004), takes external and internal loads, temperature changes, loss of bedding support, and the elastoplastic effect of soil into consideration. Based on the WPSI model, a method to evaluate the elastic and plastic areas was proposed in the present study. An FEM model based on pipe-soil interaction (PSI) element was used to verify the analytical model. Sensitivity analyses indicate that the soft soil, long pipe and high temperature induced the axial plastic deformation more likely, which, however, may not occur in normal scenarios. The soft soil, pipes in small diameters, long unsupported bedding are prone to form flexural plastic area. The results show that the pipes subjected to the same loads have smaller stresses in the elastoplastic analysis than elastic analysis. The difference, however, is slight. 展开更多
关键词 Elastoplastic soil Winkler pipe-soil interaction (WPSI) Jointed water mains
下载PDF
Experiment study on water-rock interaction about gold activation and migration in different solutions 被引量:2
12
作者 DAI Ta gen, GU Li, QIU Dong sheng, XIE Wen bing (College of Resources, Environment and Civil Engineering, Central South University, Changsha 410083, China) 《Journal of Central South University of Technology》 2001年第2期105-107,共3页
The interactions on gold active and migratory quantities and rates between tuffaceous slate and solu tions with different compositions were experimentally studied at 200 ℃, 20 MPa, in a high pressure apparatus. After... The interactions on gold active and migratory quantities and rates between tuffaceous slate and solu tions with different compositions were experimentally studied at 200 ℃, 20 MPa, in a high pressure apparatus. After reaction, tuffaceous slate became light colored and soft, and its mass density reduced. The amount of gold extracted from tuffaceous slate ranges widely, from 0 027 to 0 234 μg/g. Chlorine solution may activate appreciable amount of gold, and the gold migratory rate is high enough, from 50 70% to 92 30%, which reveals that sulphur and chlorine work together in solutions to accelerate gold activation and migration, and to realize gold mineralization in favorable places. 展开更多
关键词 water rock interaction ACTIVATION MIGRATION CHLORINE SULPHUR GOLD
下载PDF
Achieving asymmetric redox chemistry for oxygen evolution reaction through strong metal-support interactions
13
作者 Shihao Wang Meiling Fan +4 位作者 Hongfei Pan Jiahui Lyu Jinsong Wu Haolin Tang Haining Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期526-535,共10页
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo... Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability. 展开更多
关键词 Reaction redox chemistry Strong metal-support interactions Layered double hydroxides ELECTROCATALYSTS water electrolysis
下载PDF
Groundwater and surface water interactions in an alluvial plain, Tuul River Basin, Ulaanbaatar, Mongolia 被引量:1
14
作者 Maki Tsujimura Koichi Ikeda +4 位作者 Tadashi Tanaka Lunten Janchivdorj Badamgarav Erdenchimeg Damdinbazar Unurjargal Ramasamy Jayakumar 《Research in Cold and Arid Regions》 CSCD 2013年第1期126-132,共7页
Drinking water supplies in Ulaanbaatar, the capital of Mongolia, are completely dependent on groundwater sourced from pumping wells located in an alluvial plain of the Tuul River which flows through Ulaanbaatar. The i... Drinking water supplies in Ulaanbaatar, the capital of Mongolia, are completely dependent on groundwater sourced from pumping wells located in an alluvial plain of the Tuul River which flows through Ulaanbaatar. The interaction between groundwater in the alluvial plain and river surface water was investigated using a hydrological and multi-tracers approach. The observed groundwater contour map clearly shows that the Tuul River recharges the floodplain groundwater and groundwater flows from east to west. The similarity of chemical and stable isotopic compositions suggests that groundwater is mainly recharged by Tuul River water in the vicinity of the river. In addition, considering groundwater contours and chemical composition, groundwater in the northern and southern mountain sides contribute to floodplain groundwater. Stable isotopic information suggests that winter season precipita- tion also contributes to the groundwater, because groundwater in a specific region has a considerably lower isotopic ratio. Using the End Member Mixing Analysis applying oxygen-18, SiO2 and HCO3 as tracers, the contribution ratios of the Tuul River, groundwater in the northem and southern mountain regions, and winter season precipitation to floodplain groundwater are esti- mated to be 58% to 85%, 1% to 54%, 0% to 16%, and 0% to 12%, respectively. 展开更多
关键词 GROUNDwater river water interaction RECHARGE Ulaanbaatar
下载PDF
Vibration analysis of fluid- structure interaction in water hammer based on transfer matrix method 被引量:1
15
作者 GAO Hui TANG Xuelin 《排灌机械工程学报》 EI CSCD 北大核心 2016年第6期518-524,共7页
In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation... In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process. 展开更多
关键词 water hammer fluid-structure interaction transfer matrix method vibration analysis
下载PDF
Strong interactions in molybdenum disulfide heterostructures boosting the catalytic performance of water splitting: A short review 被引量:1
16
作者 Bo Shang Lin Jiao +2 位作者 Qiaoliang Bao Changming Li Xiaoqiang Cui 《Nano Materials Science》 CAS 2019年第4期231-245,共15页
Two-dimensional materials(2DMs) have attracted substantial attention due to their abundant active sites and their ultrahigh surface area for different catalytic applications due to the high lateral-longitudinal ratio.... Two-dimensional materials(2DMs) have attracted substantial attention due to their abundant active sites and their ultrahigh surface area for different catalytic applications due to the high lateral-longitudinal ratio. Transition metal dichalcogenides(TMDs), especially MoS2, as one of the 2DMs most often studied, have shown superior activity in electrochemical applications. Recently, combinations of different 2DMs have been widely studied, and they appear to be the most promising strategy available to develop state of the art catalysts for different reactions.In this article, we review the interactions between MoS2 and other materials as well as the novel assembly induced phase transitions of TMDs and their underlying mechanisms. Several methods for inducing the phase transition of TMDs by building MoS2-based heterostructures have been introduced. The electronic coupling between these counterparts has significantly enhanced their conductivity and optimized the energy states of the materials, thus introducing enhanced activity as compared to their original counterparts. The ideas summarized in this article may shed new light on and help to develop next-generation green energy materials by designing and constructing highly active two-dimensional catalysts for efficient water splitting. 展开更多
关键词 Molybdenum disulfide HETEROSTRUCTURE Phase transition interaction water splitting
下载PDF
Interaction of ions in water system containing copper-zinc alloy for boiler energy saving 被引量:2
17
作者 MING Xing LIANG Jinsheng +2 位作者 OU Xiuqin TANG Qingguo DING Yan 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期405-410,共6页
Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally.The fouling... Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally.The fouling was analyzed by scanning electron microscopy(SEM)and energy dispersive X-ray detector(EDX).The results show that the transfer of calcium and magnesium ions in heat-transfer-surface-water system is affected by zinc ions dissolved from the alloy because of primary battery reaction.Some calcium ions of calcium carbonate crystal are replaced by zinc ions,the growth of aragonite crystal nucleus is retarded,and the transition of calcium carbonate from aragonite to calcite is hampered. 展开更多
关键词 copper-zinc alloy calcium carbonate FOULING energy saving BOILER water treatment interaction of ions
下载PDF
Uncertainty Analysis for Ship-Bank Interaction Tests in A Circulating Water Channel 被引量:2
18
作者 LIU Han MA Ning GU Xie-chong 《China Ocean Engineering》 SCIE EI CSCD 2020年第3期352-361,共10页
This paper presents a systematic model test program to assess the uncertainty of the ship-bank interaction forces,using the planar motion mechanism(PMM)system in a circulating water channel(CWC).Therefore,the uncertai... This paper presents a systematic model test program to assess the uncertainty of the ship-bank interaction forces,using the planar motion mechanism(PMM)system in a circulating water channel(CWC).Therefore,the uncertainties due to ship-bank distance and water depth are considered,and they are calculated via the partial differentials of the regression formulae based on the test data.The general part of the uncertainty analysis(UA)is performed according to the ITTC recommended procedure 7.5-02-06.04,while the uncertainty of speed is identified as the bias limit due to the flow velocity maldistribution in the CWC.In each example test for the UA of ship-bank interaction forces,12 repeated measurements were conducted.Results from the UA show that the contribution of water depth error and flow velocity maldistribution to the total uncertainty is noticeable,and the paper explains how they increase with the change of the test conditions.The present study will be useful in understanding the uncertainty regarding the ship-bank interaction force measurement in a CWC. 展开更多
关键词 ship-bank interaction test uncertainty analysis circulating water channel bias limit ship-bank distance
下载PDF
Fully Coupled Simulation of Interactions Among Waves, Permeable Breakwaters and Seabeds Based on N−S Equations 被引量:2
19
作者 LI Yan-ting WANG Deng-ting +2 位作者 SUN Tian-ting HUANG Zhe LIU Qing-jun 《China Ocean Engineering》 SCIE EI CSCD 2021年第1期26-35,共10页
Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for ... Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for wave−permeable breakwater−porous seabed interactions is built based on an improved N−S equation.A numerical wave flume is constructed,and numerical studies are carried out by applying the finite difference method.In combination with a physical model test,the accuracy of the numerical simulation results is verified by comparing the calculated and measured values of wave height at measurement points and the seepage pressure within the breakwater and seabed.On this basis,the characteristics of the surrounding wave field and the internal flow field of the pore structure,as well as the evolution process of the fluctuating pore water pressure inside the breakwater and seabed,are further analyzed.The spatial distribution of the maximum fluctuating pore water pressure in the breakwater is compared between two cases by considering whether the seabed is permeable,and then the effect of seabed permeability on the dynamic pore water pressure in the breakwater is clarified.This study attempts to provide a reference for breakwater design and the protection of nearby seabeds. 展开更多
关键词 wave−breakwater−seabed interaction permeable breakwater porous seabed pore water pressure finite difference method
下载PDF
Effects of Au nanoparticle size and metal-support interaction on plasmon-induced photocatalytic water oxidation 被引量:1
20
作者 Shengyang Wang Bin Zeng Can Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第7期1219-1227,共9页
Plasmonic photocatalysis with tunable light absorption has aroused significant attention in so-lar-to-chemical energy conversion.However,the energy conversion efficiency of plasmonic photo-catalysts is impeded by inef... Plasmonic photocatalysis with tunable light absorption has aroused significant attention in so-lar-to-chemical energy conversion.However,the energy conversion efficiency of plasmonic photo-catalysts is impeded by ineffective charge separation and the lack of highly active sites for redox reactions.In this work,the Au nanoparticle size and Au-TiO2 interaction of the Au/TiO2 plasmonic photocatalyst were adjusted simultaneously using a post-calcination treatment.The visi-ble-ight-induced water oxidation activity exhibited a volcano-like relationship with the calcination temperature;the treated photocatalyst at 600°C manifested the highest activity.Characterization with UV-visible spectra,XRD,SEM,and XPS revealed that the effect of the Au nanoparticle size and Au-TiO2 interaction were both responsible for the increase in plasmon-induced water oxidation activity. 展开更多
关键词 AU/TIO2 water oxidation Plasmonic photocatalysis Size effect Metal-semiconductor interaction
下载PDF
上一页 1 2 108 下一页 到第
使用帮助 返回顶部