期刊文献+
共找到661,435篇文章
< 1 2 250 >
每页显示 20 50 100
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design 被引量:1
1
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts water splitting Hydrogen production Catalytic mechanism Synthesis technique Optimization design
下载PDF
Seismic performance evaluation of water supply pipes installed in a full-scale RC frame structure based on a shaking table test 被引量:1
2
作者 Wu Houli Guo Endong +2 位作者 Wang Jingyi Dai Xin Dai Chenxi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期163-178,共16页
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal... As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes. 展开更多
关键词 water supply pipe different materials shaking table test amplification factor seismic fragility
下载PDF
Recent advances and future prospects on Ni_(3)S_(2)-Based electrocatalysts for efficient alkaline water electrolysis 被引量:1
3
作者 Shiwen Wang Zhen Geng +4 位作者 Songhu Bi Yuwei Wang Zijian Gao Liming Jin Cunman Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期659-683,共25页
Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic... Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 Alkaline water electrolysis HYDROGEN ELECTROCATALYSTS Ni_(3)S_(2)
下载PDF
Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model
4
作者 CHEN Jiazhen KASIMU Alimujiang +3 位作者 REHEMAN Rukeya WEI Bohao HAN Fuqiang ZHANG Yan 《Journal of Arid Land》 SCIE CSCD 2024年第6期852-874,共23页
To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research ... To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research was based on land use/land cover(LULC),natural,socioeconomic,and accessibility data,utilizing the Patch-level Land Use Simulation(PLUS)and Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)models to dynamically assess LULC change and associated variations in water yield and water conservation.The analyses included the evaluation of contribution indices of various land use types and the investigation of driving factors that influence water yield and water conservation.The results showed that the change of LULC in the Bosten Lake Basin from 2000 to 2020 showed a trend of increasing in cultivated land and construction land,and decreasing in grassland,forest,and unused land.The unused land of all the three predicted scenarios of 2030(S1,a natural development scenario;S2,an ecological protection scenario;and S3,a cultivated land protection scenario)showed a decreasing trend.The scenarios S1 and S3 showed a trend of decreasing in grassland and increasing in cultivated land;while the scenario S2 showed a trend of decreasing in cultivated land and increasing in grassland.The water yield of the Bosten Lake Basin exhibited an initial decline followed by a slight increase from 2000 to 2020.The areas with higher water yield values were primarily located in the northern section of the basin,which is characterized by higher altitude.Water conservation demonstrated a pattern of initial decrease followed by stabilization,with the northeastern region demonstrating higher water conservation values.In the projected LULC scenarios of 2030,the estimated water yield under scenarios S1 and S3 was marginally greater than that under scenario S2;while the level of water conservation across all three scenarios remained rather consistent.The results showed that Hejing County is an important water conservation function zone,and the eastern part of the Xiaoyouledusi Basin is particularly important and should be protected.The findings of this study offer a scientific foundation for advancing sustainable development in arid watersheds and facilitating efficient water resource management. 展开更多
关键词 PLUS model InVEST model Bosten Lake Basin water yield water conservation land-use simulation Geodetector
下载PDF
An extended micromechanical-based plastic damage model for understanding water effects on quasi-brittle rocks
5
作者 Qiaojuan Yu Shigui Du +3 位作者 Qizhi Zhu Zhanyou Luo Sili Liu Lunyang Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期289-304,共16页
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani... Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water. 展开更多
关键词 water MICRO-CRACK DAMAGE MICRO-MECHANICS Constitutive model Cohesive force
下载PDF
Contract Mechanism of Water Environment Regulation for Small and Medium Sized Enterprises Based on Optimal Control Theory
6
作者 Shuang Zhao Hongbin Gu +2 位作者 Lianfang Xue Dongsheng Wang Bin Huang 《Journal of Water Resource and Protection》 CAS 2024年第7期538-556,共20页
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea... The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed. 展开更多
关键词 Optimal Control Theory Small and Medium-Sized Enterprises water Environment Regulation Contract Mechanism
下载PDF
Assessment of natural and anthropogenic impacts on terrestrial water storage in the Loess Plateau based on different types of GRACE/GRACE-FO solutions
7
作者 ZHANG Cheng CHEN Peng +4 位作者 ZHU Chengchang LU Jierui ZHANG Yuchen YANG Xinyue WU Mengyan 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2173-2192,共20页
Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of wat... Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of water resources.Data from the Gravity Recovery and Climate Experiment(GRACE)satellite mission are extensively employed to analyze large-scale total terrestrial water storage anomalies(TWSA).In this study,we derived a more reliable TWSA using different types of GRACE gravity models,which served as the basis for evaluating spatial and temporal variations in total terrestrial water storage and its hydrological components(soil moisture and groundwater)across the Loess Plateau.Additionally,we analyzed the impact of natural and anthropogenic influences on water storage in the Loess Plateau,categorizing them into primary and secondary influences,utilizing data on climate and human activities.The findings revealed a declining trend in the overall TWSA of the Loess Plateau,with a rate of decrease at-0.65±0.05 cm/yr from 2003 to 2020(P<0.01).As the direct factors affecting TWSA,soil moisture dominated the change of TWSA before 2009,and groundwater dominated the change of TWSA after 2009.Spatially,there was variability in the changes of TWSA in the Loess Plateau.More in-depth studies showed that soil moisture changes in the study area were primarily driven by evapotranspiration and temperature,with precipitation and vegetation cover status playing a secondary role.Human activities had a secondary effect on soil moisture in some sub-regions.Population change and agricultural development were major factors in altering groundwater storage in the study area.Other than that,groundwater was influenced by natural factors to a limited extent.These findings provided valuable insights for local governments to implement proactive water management policies. 展开更多
关键词 GRACE Terrestrial water storage Human activity Loess Plateau
下载PDF
Application of Plant-Based Coagulants and Their Mechanisms in Water Treatment:A Review
8
作者 Abderrezzaq Benalia Kerroum Derbal +3 位作者 Zahra Amrouci Ouiem Baatache Amel Khalfaoui Antonio Pizzi 《Journal of Renewable Materials》 EI CAS 2024年第4期667-698,共32页
This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging.... This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging.Various factors have influence the coagulation/flocculation process,including the effect of pH,coagulant dosage,coagulant type,temperature,initial turbidity,coagulation speed,flocculation speed,coagulation and flocculation time,settling time,colloidal particles,zeta potential,the effects of humic acids,and extraction density are explained.The bio-coagulants derived from plants are outlined.The impact of organic coagulants on water quality,focusing on their effects on the physicochemical parameters of water,heavy metals removal,and bacteriological water quality,is examined.The methods of extraction and purification of plant-based coagulants,highlighting techniques such as solvent extraction and ultrasonic extraction,are discussed.It also examines the parameters that influence these processes.The methods and principles of purification of coagulating agents,including dialysis,freeze-drying,ion exchange,electrophoresis,filtration,and centrifugation,are listed.Finally,it evaluates the sustainability of natural coagulants,focusing on the environmental,technical,and economic aspects of their use.At the end of this review,the readers should have a comprehensive understanding of the mechanisms,selection,extraction,purification,and sustainability of plant-based natural coagulants in water treatment. 展开更多
关键词 Bio-coagulants coagulating agents extraction water treatment
下载PDF
The component-activity interrelationship of cobalt-based bifunctional electrocatalysts for overall water splitting:Strategies and performance
9
作者 Mingjie Sun Riyue Ge +4 位作者 Sean Li Liming Dai Yiran Li Bin Liu Wenxian Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期453-474,共22页
Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysi... Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications. 展开更多
关键词 COBALT Bifunctional electrocatalysis water splitting Modification strategies Electrocatalytic performances
下载PDF
Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm
10
作者 Heng Zhang Chao Su +2 位作者 Zhizhong Song Zhenzhong Shen Huiguang Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期813-826,共14页
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for... Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development. 展开更多
关键词 Fourier equation cooling water pipe mass concrete iteration algorithm
下载PDF
Progress in metal oxide-based electrocatalysts for sustainable water splitting
11
作者 Aasiya S.Jamadar Rohit Sutar +2 位作者 Susmita Patil Reshma Khandekar Jyotiprakash B.Yadav 《Materials Reports(Energy)》 EI 2024年第3期19-34,共16页
Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in va... Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions,discussing their crystal structure,composition,and surface modification influence on performance.Strategies like surface engineering,doping,and nanostructuring are evaluated for enhancing catalytic activity and stability.The key considerations for commercialization are highlighted,emphasizing ongoing research,innovation,and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future. 展开更多
关键词 Metal oxide HER OER ELECTROCATALYST Overall water spilling
下载PDF
Defect engineering in transition-metal(Fe,Co,andNi)-based electrocatalysts for water splitting
12
作者 Kaili Wu Chaojie Lyu +5 位作者 Jiarun Cheng Weifan Ding Jiwen Wu Qian Wang Woon-Ming Lau Jinlong Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期165-199,共35页
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De... Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications. 展开更多
关键词 defect engineering electrocatalytic water splitting element doping interfacial engineering VACANCY
下载PDF
Rational design of natural leather-based water evaporator for electricity generation and functional applications
13
作者 Bingyuan Zhang Xiaoyu Guan +10 位作者 Qingxin Han Haoxiang Guo Sai Zheng Xuhui Sun Afnan H.El-Gowily Mohammed A.Abosheasha Yanxia Zhu Motoki Ueda Meng An Haojun Fan Yoshihiro Ito 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期129-144,共16页
In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricat... In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricate hydrovoltaic devices,the limitations of high costs,inconvenient storage and transport,low environmental benefits,and unadaptable shape have restricted their wide applications.Here,an electricity generator driven by water evaporation has been engineered based on natural biomass leather with inherent properties of good moisture permeability,excellent wettability,physicochemical stability,flexibility,and biocompatibility.Including numerous nano/microchannels together with rich oxygen-bearing functional groups,the natural leather-based water evaporator,Leather_(Emblic-NPs-SA/CB),could continuously produce electricity even staying outside,achieving a maximum output voltage of∼3 V with six-series connection.Furthermore,the leather-based water evaporator has enormous potential for use as a flexible self-powered electronic floor and seawater demineralizer due to its sensitive pressure sensing ability as well as its excellent photothermal conversion efficiency(96.3%)and thus fast water evaporation rate(2.65 kg m^(−2)h^(−1)).This work offers a new and functional material for the construction of hydrovoltaic devices to harvest the sustained green energy from water evaporation in arbitrary ambient environments,which shows great promise in their widespread applications. 展开更多
关键词 Energy conversion water evaporation-induced electricity Functional leather Flexible self-powered sensor DESALINATION
下载PDF
Research Progress on Economic Forest Water Stress Based on Bibliometrics and Knowledge Graph
14
作者 Xin Yin Shuai Wang +3 位作者 Chunguang Wang Haichao Wang Zheying Zong Zeyu Ban 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第5期843-858,共16页
This study employed the bibliometric software CiteSpace 6.1.R6 to analyze the correlation between thermal infrared,spectral remote sensing technology,and the estimation of economic forest water stress.It aimed to revi... This study employed the bibliometric software CiteSpace 6.1.R6 to analyze the correlation between thermal infrared,spectral remote sensing technology,and the estimation of economic forest water stress.It aimed to review the development and current status of this field,as well as to identify future research trends.A search was conducted on the China National Knowledge Infrastructure(CNKI)database using the keyword“water stress”for relevant studies from 2003 to 2023.The visual analysis function of CNKI was used to generate the distribution of annual publication volume,and CiteSpace 6.1.R6 was utilized to create network maps illustrating collaboration among authors and institutions.The study also analyzed the hotspots and frontiers of economic forest water stress.As a result,a total of 6664 academic journal articles related to water stress were retrieved.Considerable collaboration networks were observed among scholars and institutions,with a focus on using crown temperature monitoring to diagnose crop water stress.Based on the research findings,it was evident that the primary research trend involved the use of thermal infrared and spectral remote sensing technology for estimating water stress,making it a future research hotspot. 展开更多
关键词 water stress thermal infrared SPECTRAL visual analysis knowledge map CITESPACE
下载PDF
High-throughput calculation-based rational design of Fe-doped MoS_(2) nanosheets for electrocatalytic p H-universal overall water splitting
15
作者 Guangtong Hai Xiangdong Xue +3 位作者 Zhenyu Wu Canyang Zhang Xin Liu Xiubing Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期194-202,共9页
Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheet... Electrocatalytic water splitting is crucial for H2generation via hydrogen evolution reaction(HER)but subject to the sluggish dynamics of oxygen evolution reaction(OER).In this work,single Fe atomdoped MoS_(2)nanosheets(SFe-DMNs)were prepared based on the high-throughput density functional theory(DFT)calculation screening.Due to the synergistic effect between Fe atom and MoS_(2)and optimized intermediate binding energy,the SFe-DMNs could deliver outstanding activity for both HER and OER.When assembled into a two-electrode electrolytic cell,the SFe-DMNs could achieve the current density of 50 mA cm^(-2)at a low cell voltage of 1.55 V under neutral condition.These results not only confirmed the effectiveness of high-throughput screening,but also revealed the excellent activity and thus the potential applications in fuel cells of SFe-DMNs. 展开更多
关键词 High-throughput calculation Overall water splitting Single atom doped catalyst Molybdenum disulfide nanosheet
下载PDF
A Calculation Method of Double Strength Reduction for Layered Slope Based on the Reduction of Water Content Intensity
16
作者 Feng Shen Yang Zhao +1 位作者 Bingyi Li Kai Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期221-243,共23页
The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties... The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes. 展开更多
关键词 Double strength reduction slopes stability water content factor of safety numerical methods
下载PDF
Target Detection on Water Surfaces Using Fusion of Camera and LiDAR Based Information
17
作者 Yongguo Li Yuanrong Wang +2 位作者 Jia Xie Caiyin Xu Kun Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期467-486,共20页
To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and... To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets. 展开更多
关键词 water surface target detection YOLOv7 joint calibration sensor fusion point-cloud projection
下载PDF
Scenario-Based Assessment of the Water-Energy-Food Nexus in Kuwait: Insights for Effective Resource Management
18
作者 Amani Al-Adwani Ali Karnib +1 位作者 Alaa Elsadek Waleed Al-Zubari 《Computational Water, Energy, and Environmental Engineering》 2024年第1期38-57,共20页
The interdependency among water, food, and energy (WEF) in the GCC countries is strongly and closely interlinked, and is intensifying as demand for resources increases with population growth and changing consumption p... The interdependency among water, food, and energy (WEF) in the GCC countries is strongly and closely interlinked, and is intensifying as demand for resources increases with population growth and changing consumption patterns, and are expected to be further compounded by the impacts of climate change. Therefore, integrated management of the three sectors is crucial to reduce trade-offs and build synergies among them. This paper presents a comprehensive framework to assess the WEF nexus in Kuwait as a representative case for the GCC countries. The framework consists of three main steps: 1) evaluating the influence of socio-economic development and climate change on water, energy, and food resources;2) generating scenario-based projections;and 3) conducting an extensive quantitative nexus analysis. The WEF interlinkages in Kuwait are modelled quantitatively using the Q-Nexus model, and current critical interdependencies are evaluated. Then, various WEF-Nexus scenarios were conducted for the year 2035 to explore the effects of management interventions in one sector on the other two sectors. The main findings are that per capita municipal water consumption is a major influencer on the WEF-nexus due to the heavy reliance on thermal desalination in municipal water supply in Kuwait, which is attributed to its energy intensity, financial cost, GHGs emissions, and environmental impacts on the marine and air environments. To reduce WEF trade-offs, mitigate risks, and build synergies among the three sectors, it is important to shift the current policy focus on supply-side management approach to the demand-side management and efficiency approaches. 展开更多
关键词 Climate Change Socio-Economic Development Municipal water Consumption Agricultural water Consumption Renewable Energy Desalination Technology
下载PDF
First record of abnormal body coloration in a rockfish Sebastes koreanus(Scorpaenoidei:Sebastidae)from coastal water of China based on morphological characteristics and DNA barcoding
19
作者 Ang LI Huan WANG +1 位作者 Changting AN Shufang LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期640-646,共7页
The first record of abnormal body coloration in Sebastes koreanus Kim and Lee,1994,from the Yellow Sea of China,was documented based on morphological characteristics and DNA barcoding.The two rockfish specimens were c... The first record of abnormal body coloration in Sebastes koreanus Kim and Lee,1994,from the Yellow Sea of China,was documented based on morphological characteristics and DNA barcoding.The two rockfish specimens were collected from the coastal waters of Qingdao,China,and the whole body and all fins of them were red.Of the two red-colored rockfish,there were tiny deep red spots on each fin,2 red radial stripes behind and below the eyes and 1 large deep red blotch on the opercula,while the similar stripe and spot patterns are also present in the S.koreanus specimens with normal body coloration.The countable characteristics of the two specimens are in the range of the morphometry of S.koreanus.To further clarify the species identity and taxonomic status of the two specimens,DNA barcode analysis was carried out.The genetic distance between the red-colored rockfish and S.koreanus was 0,and the minimum net genetic distances between the red-colored rockfish and other Sebastes species except for S.koreanus were 3.0%,which exceeds the threshold of species delimitation.The phylogenetic analysis showed that the DNA barcoding sequences of the two red-colored rockfish clustered with the S.koreanus sequences.The above results of DNA barcode analysis also support that the two red-colored rockfish could be identified as the species of S.koreanus.The mechanism of color variation in S.koreanus is desirable for further research and the species could be an ideal model to study the color-driven speciation of the rockfishes. 展开更多
关键词 abnormal body coloration Sebastes koreanus coastal water of China Yellow Sea morphological characteristics DNA barcoding
下载PDF
Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis
20
作者 Jingchen Na Hongmei Yu +7 位作者 Senyuan Jia Jun Chi Kaiqiu Lv Tongzhou Li Yun Zhao Yutong Zhao Haitao Zhang Zhigang Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期370-382,共13页
Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,par... Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AEMWE in the direct seawater electrolysis industry. 展开更多
关键词 Direct seawater electrolysis Anion exchange membrane water ELECTROLYSIS Oxygen evolution reaction Oxygen vacancies Operando electrochemistry techniques
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部