正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8...正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.展开更多
This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The ...This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region.展开更多
Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant infl...Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant influences on the atmospheres of hot planets.Generally,the escaping atmospheres are not entirely ionized,and magnetic fields only directly affect the escape of ionized components within them.Considering the chemical reactions between ionized components and neutral atoms,as well as collision processes,magnetic fields indirectly impact the escape of neutral atoms,thereby influencing the detection signals of planetary atmospheres in transmission spectra.In order to simulate this process,we developed a magnetohydrodynamic multi-fluid model based on MHD code PLUTO.As an initial exploration,we investigated the impact of magnetic fields on the decoupling of H^(+)and H in the escaping atmosphere of the hot Neptune GJ436b.Due to the strong resonant interactions between H and H^(+),the coupling between them is tight even if the magnetic field is strong.Of course,alternatively,our work also suggests that merging H and H^(+)into a single flow can be a reasonable assumption in MHD simulations of escaping atmospheres.However,our simulation results indicate that under the influence of magnetic fields,there are noticeable regional differences in the decoupling of H^(+)and H.With the increase of magnetic field strength,the degree of decoupling also increases.For heavier particles such as O,the decoupling between O and H^(+)is more pronounced.Our findings provide important insights for future studies on the decoupling processes of heavy atoms in the escaping atmospheres of hot Jupiters and hot Neptunes under the influence of magnetic fields.展开更多
Appropriate physical exercise has a positive impact on adolescents’physical and mental health,but there is a serious lack of physical exercise among Chinese adolescents.How to shape their exercise behavior(EB)has bec...Appropriate physical exercise has a positive impact on adolescents’physical and mental health,but there is a serious lack of physical exercise among Chinese adolescents.How to shape their exercise behavior(EB)has become an important task in promoting their development.A questionnaire survey was conducted using stratified cluster random sampling on three middle schools by class in Zhejiang Province,China to investigate the impact of exercise atmosphere(EA)on adolescents’exercise behavior and the mediating role of exercise identity(EI)and exercise habit(EH).806 adolescents were investigated by the Exercise Atmosphere Scale(EAS),Exercise-Identity Scale(EIS),Self-Report Habit Index(SRHI),and Physical Activity Rating Scale(PARS-3).The results show that:There is a significant positive correlation between each two of exercise atmosphere,exercise identity,exercise habit,and exercise behavior(p<0.05).Exercise atmosphere could not only directly affect adolescents’physical exercise behavior but can also indirectly affect their physical exercise behavior through the mediating effect of exercise identity and exercise habit,involving three mediating pathways,namely,the mediating path through exercise identity,the mediating pathway through exercise habit and the chain mediating pathway through exercise identity and exercise habit.The direct effect of exercise atmosphere on exercise behavior was 0.459(p<0.01),accounting for 62.62% of the total effect of 0.733,and its indirect effect was 0.274,accounting for 37.28% of the total effect.To a certain extent,the mediating effect model reveals the mechanism of exercise atmosphere affecting exercise behavior and has a certain reference value for promoting adolescents’exercise behavior.We should start by creating an exercise atmosphere,cultivating exercise identity,and enhancing exercise habits to help teenagers form active physical exercise behaviors.展开更多
Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle ...Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO_(2)content,which spreaded for tens of kilometers.SO_(2)content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
In an era of scene-based consumption,the essence of operating a bookstore lies in accepting and enabling the bookstore to play its role as a cultural medium for browsing and appreciating books,which in turn fosters th...In an era of scene-based consumption,the essence of operating a bookstore lies in accepting and enabling the bookstore to play its role as a cultural medium for browsing and appreciating books,which in turn fosters the development of a distinctive bookstore culture.This new type of consumption context has led to an evolution in the book-reading culture in physical bookstores that is characterized by a shift from a paradigm of passive reading to one where the emphasis is on interactive viewing.This transition has laid the foundation for the creation of cultural atmospheres in bookstores,and it highlights the visual interactions that now exist between readers and books as well as with other related cultural industries.The dominant and fundamental logic behind this process is symbiosis,experience,aesthetics,immersion,and creativity.However,when a form of culture that focuses on consumption-oriented browsing begins to overshadow knowledge acquisition during the process of book reading,the cultural essence of bookstores is likely to be diminished.Therefore,the cultural essence within the scene-based consumption context should be enhanced by creating innovative viewing activities that showcase the cultural and emotional implications inherent in the scene itself,and thus help to align the identity of the bookstore with its in-situ cultural space.展开更多
Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between pr...Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between protein changes and quality characteristics of modified atmosphere packaging(MAP)fillets during superchilling(-3°C)storage.Scanning electron microscopy was used to show that the muscle histology microstructure of fillets was damaged to varying degrees,and low-field nuclear magnetic resonance was used to find that the immobilized water and free water in the muscle of fillets changed significantly.Total sulfhydryl content,TCA-soluble peptides and Ca2+-ATPase activity also showed that the fillet protein had a deterioration by oxidation and denaturation.The Fresh(FS),MAP,and air packaging(AP)groups were set.Total of 150 proteins were identified as differential abundant proteins(DAPs)in MAP/FS,while 209 DAPs were in AP/FS group.The KEGG pathway analysis indicated that most DAPs were involved in binding proteins and protein turnover.Correlation analysis found that 52 DAPs were correlated with quality traits.Among them,8 highly correlated DAPs are expected to be used as potential quality markers for protein oxidation and water-holding capacity.These results provide a further understanding of the muscle deterioration mechanism of packaging golden pompano fillets during superchilling.展开更多
Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and wa...Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.展开更多
This study mainly monitored the dominant bacterial populations and identified the spoilage-related microorganisms of braised chicken meat stored under different CO_(2)-modified atmosphere packaging(MAP)during refriger...This study mainly monitored the dominant bacterial populations and identified the spoilage-related microorganisms of braised chicken meat stored under different CO_(2)-modified atmosphere packaging(MAP)during refrigerated storage using a culture-dependent method and 16S rDNA identification.The quality changes and shelf life of the meat were also measured.The growth rate of total viable count(TVC)in braised chicken was slower with an increase of CO_(2) content in MAP,which also occurred in the remaining bacterial species monitored(lactic acid bacteria,Pseudomonas spp.,Brochothrix thermosphacta).The MAP exerted beneficial effects on the quality of braised chicken,as demonstrated by retarding the production of total volatile basic nitrogen(TVB-N)and delaying lipid oxidation(TBARS test).A total of 14 isolates were identified from braised chickens with different packaging at the end of storage,these included P.fragi(6 isolates),P.psychrophila(2 isolates),Enterococcus faecalis(3 isolates),B.thermosphacta(2 isolates),Staphylococcus equorum(1 isolate).展开更多
New progresses are introduced briefly about the water cycle study on atmosphere of China made in recent years. The introduction includes eight aspects as follows: 1) precipitation characteristics, 2) stability of clim...New progresses are introduced briefly about the water cycle study on atmosphere of China made in recent years. The introduction includes eight aspects as follows: 1) precipitation characteristics, 2) stability of climatic system, 3) precipitation sensitive region, 4) regional evaporation and evapotranspiration, 5) water surface evaporation, 6) vegetation transpiration, 7) cloud physics, and 8) vapor source.展开更多
To realize the comprehensive utilization of ludwigite ore,an integrated and efficient route for the boron and iron separation was proposed in this work,which via soda-ash roasting under CO–CO_(2)–N_(2) atmosphere fo...To realize the comprehensive utilization of ludwigite ore,an integrated and efficient route for the boron and iron separation was proposed in this work,which via soda-ash roasting under CO–CO_(2)–N_(2) atmosphere followed by grind-leaching,magnetic separation,and CO_(2) carbonation.The effects of roasting temperature,roasting time,CO/(CO+CO_(2))composition,and Na_(2)CO_(3) dosage on the boron and iron separation indices were primarily investigated.Under the optimized conditions of the roasting temperature of 850℃,roasting time of 60 min,soda ash dosage of 20 wt%,and CO/(CO+CO_(2)) of 10 vol%,92%of boron was leached during wet grinding,and 88.6%of iron was recovered during the magnetic separation and magnetic concentrate with a total iron content of 61.51 wt%.Raman spectra and^(11)B NMR results indicated that boron exists asB(OH)_(4)^(-) in the leachate,from which high-purity borax pentahydrate could be prepared by CO_(2) carbonation.展开更多
A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%...A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%),namely,mesoporous silica capsule(MSC)with core-shell structure.Transmission electron microscopy(TEM),nitrogen adsorption and other characterization techniques were used to study the formation process of nano-microspheres.A new mechanism of self-adaptive concentration gradient regulation of silicon migration and recombination core-shell structure was proposed to explain the formation of a cavity in the MSC system.The core-shell design can enhance the specific surface area and pore volume while maintaining the monodispersity and mesoporous size.To study the water harvesting performance of MSC,solid silica nanoparticles(SSN)and mesoporous silica nanoparticles(MSN)were prepared.In a small atmospheric water collection test(25℃,40%RH),the water vapour adsorption and desorption kinetics of MSC,SSN,MSN and a commercial silica gel(CSG)were compared and analyzed.The results show that the MSC with mesoporous channels and core-shell structure can provide about 0.324 gwater/gadsorbent,79%higher than the CSG(0.181 gwater/gadsorbent).It is 25.1%higher than that of 0.259 gwater/gadsorbentof un-hollowed MSN and 980%higher than that of0.03 gwater/gadsorbentof un-hollowed SSN.The material has a large specific surface area and pore volume,simple preparation method and low cost,which provides a feasible idea for realising atmospheric water collection in arid and semi-arid regions.展开更多
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ...This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models.展开更多
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t...Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.展开更多
The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of th...The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.展开更多
Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer ...Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer interference for tight gas reservoirs are really limited,especially for those reservoirs in the presence of water.In this work,five types of possible inter-layer interferences,including both absence and presence of water,are identified for commingled production of tight gas reservoirs.Subsequently,a series of reservoir-scale and pore-scale numerical simulations are conducted to quantify the degree of influence of each type of interference.Consistent field evidence from the Yan'an tight gas reservoir(Ordos Basin,China)is found to support the simulation results.Additionally,suggestions are proposed to mitigate the potential inter-layer interferences.The results indicate that,in the absence of water,commingled production is favorable in two situations:when there is a difference in physical properties and when there is a difference in the pressure system of each layer.For reservoirs with a multi-pressure system,the backflow phenomenon,which significantly influences the production performance,only occurs under extreme conditions(such as very low production rates or well shut-in periods).When water is introduced into the multi-layer system,inter-layer interference becomes nearly inevitable.Perforating both the gas-rich layer and water-rich layer for commingled production is not desirable,as it can trigger water invasion from the water-rich layer into the gas-rich layer.The gas-rich layer might also be interfered with by water from the neighboring unperforated water-rich layer,where the water might break the barrier(eg weak joint surface,cement in fractures)between the two layers and migrate into the gas-rich layer.Additionally,the gas-rich layer could possibly be interfered with by water that accumulates at the bottom of the wellbore due to gravitational differentiation during shut-in operations.展开更多
To eliminate the irrational supposition that condensed liquid water always falls immediately, specific water m?and maximum airborne specific water mm are introduced into the dynamic framework on non-uniform saturated ...To eliminate the irrational supposition that condensed liquid water always falls immediately, specific water m?and maximum airborne specific water mm are introduced into the dynamic framework on non-uniform saturated moist atmosphere (m?is the ratio of the airborne liquid water mass to the moist air mass in unit cubage moist air, mm is its maximum value with , , and are airborne coefficient, vertical velocity and saturated specific humidity respectively). The balance equation between water vapor and airborne liquid water is derived. From the balance equation, a new formula of precipitate rate is got. The analysis shows that in the air stream with some upward vertical velocity ( ), the condensed liquid water can precipitate under the condition with (q is specific humidity) and? only, otherwise it is detained in the air and becomes airborne liquid water. Not only does precipitating liquid water contain condensed liquid water, but also contains converged and existing airborne liquid water. Following above discussion, improved dynamic equations on non-uniform saturated moist atmosphere are provided.展开更多
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N...The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.展开更多
基金supported by the National Natural Science Foundation of China,under the project entitled“The study of land-atmosphere water and heat flux interaction over the complex terrain of the north and south slopes of the Qomolangma region"[grant number 42230610]a Ministry of Science and Technology of China project called“Landatmosphere interaction and its climate effect of the Second Tibetan Plateau Scientific Expedition and Research Program"[grant number 2019QzKK0103]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[2022069].
文摘正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.
基金supported by The Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0105)the National Natural Science Foundation of China(91437221,91837204).
文摘This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences,grant No.XDB 41000000National Natural Science Foundation of China(NSFC,Grant No.12288102)+4 种基金support of the National Natural Science Foundation of China(NSFC,Grant No.11973082)support of the National Natural Science Foundation of China(NSFC,Grant No.42305136)supported by the National Key R&D Program of China(Grant No.2021YFA1600400/2021YFA1600402)Natural Science Foundation of Yunnan Province(No.202201AT070158)the International Centre of Supernovae,Yunnan Key Laboratory(No.202302AN360001)。
文摘Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant influences on the atmospheres of hot planets.Generally,the escaping atmospheres are not entirely ionized,and magnetic fields only directly affect the escape of ionized components within them.Considering the chemical reactions between ionized components and neutral atoms,as well as collision processes,magnetic fields indirectly impact the escape of neutral atoms,thereby influencing the detection signals of planetary atmospheres in transmission spectra.In order to simulate this process,we developed a magnetohydrodynamic multi-fluid model based on MHD code PLUTO.As an initial exploration,we investigated the impact of magnetic fields on the decoupling of H^(+)and H in the escaping atmosphere of the hot Neptune GJ436b.Due to the strong resonant interactions between H and H^(+),the coupling between them is tight even if the magnetic field is strong.Of course,alternatively,our work also suggests that merging H and H^(+)into a single flow can be a reasonable assumption in MHD simulations of escaping atmospheres.However,our simulation results indicate that under the influence of magnetic fields,there are noticeable regional differences in the decoupling of H^(+)and H.With the increase of magnetic field strength,the degree of decoupling also increases.For heavier particles such as O,the decoupling between O and H^(+)is more pronounced.Our findings provide important insights for future studies on the decoupling processes of heavy atoms in the escaping atmospheres of hot Jupiters and hot Neptunes under the influence of magnetic fields.
文摘Appropriate physical exercise has a positive impact on adolescents’physical and mental health,but there is a serious lack of physical exercise among Chinese adolescents.How to shape their exercise behavior(EB)has become an important task in promoting their development.A questionnaire survey was conducted using stratified cluster random sampling on three middle schools by class in Zhejiang Province,China to investigate the impact of exercise atmosphere(EA)on adolescents’exercise behavior and the mediating role of exercise identity(EI)and exercise habit(EH).806 adolescents were investigated by the Exercise Atmosphere Scale(EAS),Exercise-Identity Scale(EIS),Self-Report Habit Index(SRHI),and Physical Activity Rating Scale(PARS-3).The results show that:There is a significant positive correlation between each two of exercise atmosphere,exercise identity,exercise habit,and exercise behavior(p<0.05).Exercise atmosphere could not only directly affect adolescents’physical exercise behavior but can also indirectly affect their physical exercise behavior through the mediating effect of exercise identity and exercise habit,involving three mediating pathways,namely,the mediating path through exercise identity,the mediating pathway through exercise habit and the chain mediating pathway through exercise identity and exercise habit.The direct effect of exercise atmosphere on exercise behavior was 0.459(p<0.01),accounting for 62.62% of the total effect of 0.733,and its indirect effect was 0.274,accounting for 37.28% of the total effect.To a certain extent,the mediating effect model reveals the mechanism of exercise atmosphere affecting exercise behavior and has a certain reference value for promoting adolescents’exercise behavior.We should start by creating an exercise atmosphere,cultivating exercise identity,and enhancing exercise habits to help teenagers form active physical exercise behaviors.
基金the Indonesian Collaborative Research(RKI)2022:598/IT2/T/HK.00.01/2022Center of Volcanology and Geological Hazard Mitigation of Indonesia for the data and financial support of this research。
文摘Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO_(2)content,which spreaded for tens of kilometers.SO_(2)content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金supported by the Zhijiang Youth Special Project entitled“Cross-Cultural Examination of National Identity and Discourse Formation in Chinese Short Video Content” (Project No.:24ZJQN026Y)a philosophy and social sciences project funded by Zhejiang province。
文摘In an era of scene-based consumption,the essence of operating a bookstore lies in accepting and enabling the bookstore to play its role as a cultural medium for browsing and appreciating books,which in turn fosters the development of a distinctive bookstore culture.This new type of consumption context has led to an evolution in the book-reading culture in physical bookstores that is characterized by a shift from a paradigm of passive reading to one where the emphasis is on interactive viewing.This transition has laid the foundation for the creation of cultural atmospheres in bookstores,and it highlights the visual interactions that now exist between readers and books as well as with other related cultural industries.The dominant and fundamental logic behind this process is symbiosis,experience,aesthetics,immersion,and creativity.However,when a form of culture that focuses on consumption-oriented browsing begins to overshadow knowledge acquisition during the process of book reading,the cultural essence of bookstores is likely to be diminished.Therefore,the cultural essence within the scene-based consumption context should be enhanced by creating innovative viewing activities that showcase the cultural and emotional implications inherent in the scene itself,and thus help to align the identity of the bookstore with its in-situ cultural space.
基金supported by Central Public-Interest Scientific Institution Basal Research Fund,CAFS(2023TD74,2023TD78)the Earmarked Fund for CARS-47(CARS-47)+2 种基金Guangdong Provincial Science and Technology Plan Project(2023B0202010015)Central Public-Interest Scientific Institution Basal Research Fund,CAFS(Sanya Yazhou Bay Science and Technology City(SKJC-2020-02-013))Special Funds for Promoting Economic Development in Guangdong Province(For Modern Fishery)(YueNong 2019B14).
文摘Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between protein changes and quality characteristics of modified atmosphere packaging(MAP)fillets during superchilling(-3°C)storage.Scanning electron microscopy was used to show that the muscle histology microstructure of fillets was damaged to varying degrees,and low-field nuclear magnetic resonance was used to find that the immobilized water and free water in the muscle of fillets changed significantly.Total sulfhydryl content,TCA-soluble peptides and Ca2+-ATPase activity also showed that the fillet protein had a deterioration by oxidation and denaturation.The Fresh(FS),MAP,and air packaging(AP)groups were set.Total of 150 proteins were identified as differential abundant proteins(DAPs)in MAP/FS,while 209 DAPs were in AP/FS group.The KEGG pathway analysis indicated that most DAPs were involved in binding proteins and protein turnover.Correlation analysis found that 52 DAPs were correlated with quality traits.Among them,8 highly correlated DAPs are expected to be used as potential quality markers for protein oxidation and water-holding capacity.These results provide a further understanding of the muscle deterioration mechanism of packaging golden pompano fillets during superchilling.
基金supported by the National Natural Science Foundation of China(Grant Nos.41761047,41861040 and 41861034).
文摘Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.
基金supported by the National Key Technologies R&D Program of China[grant number 2022YFC3002803]the National Science Fund for Distinguished Young Scholars[grant number 41925021].
基金financially supported by China Agriculture Research System (Beijing, China, CARS-41-Z06)Nanjing Professor Huang Food Technology Co., Ltd.
文摘This study mainly monitored the dominant bacterial populations and identified the spoilage-related microorganisms of braised chicken meat stored under different CO_(2)-modified atmosphere packaging(MAP)during refrigerated storage using a culture-dependent method and 16S rDNA identification.The quality changes and shelf life of the meat were also measured.The growth rate of total viable count(TVC)in braised chicken was slower with an increase of CO_(2) content in MAP,which also occurred in the remaining bacterial species monitored(lactic acid bacteria,Pseudomonas spp.,Brochothrix thermosphacta).The MAP exerted beneficial effects on the quality of braised chicken,as demonstrated by retarding the production of total volatile basic nitrogen(TVB-N)and delaying lipid oxidation(TBARS test).A total of 14 isolates were identified from braised chickens with different packaging at the end of storage,these included P.fragi(6 isolates),P.psychrophila(2 isolates),Enterococcus faecalis(3 isolates),B.thermosphacta(2 isolates),Staphylococcus equorum(1 isolate).
基金Knowledge Innovation Program of CAS No. KZCX1-10-07+3 种基金 National Natural Science Foundation of China No. 49971078 Knowledge Innovation Project of CAS No. KZCX2-314
文摘New progresses are introduced briefly about the water cycle study on atmosphere of China made in recent years. The introduction includes eight aspects as follows: 1) precipitation characteristics, 2) stability of climatic system, 3) precipitation sensitive region, 4) regional evaporation and evapotranspiration, 5) water surface evaporation, 6) vegetation transpiration, 7) cloud physics, and 8) vapor source.
基金financially supported by the National Key Research and Development Program of China(No.2020YFC1909803)the Basic Science Center Project for the National Natural Science Foundation of China(No.72088101)the Graduate Research and Innovative Project of Central South University(No.506021739)。
文摘To realize the comprehensive utilization of ludwigite ore,an integrated and efficient route for the boron and iron separation was proposed in this work,which via soda-ash roasting under CO–CO_(2)–N_(2) atmosphere followed by grind-leaching,magnetic separation,and CO_(2) carbonation.The effects of roasting temperature,roasting time,CO/(CO+CO_(2))composition,and Na_(2)CO_(3) dosage on the boron and iron separation indices were primarily investigated.Under the optimized conditions of the roasting temperature of 850℃,roasting time of 60 min,soda ash dosage of 20 wt%,and CO/(CO+CO_(2)) of 10 vol%,92%of boron was leached during wet grinding,and 88.6%of iron was recovered during the magnetic separation and magnetic concentrate with a total iron content of 61.51 wt%.Raman spectra and^(11)B NMR results indicated that boron exists asB(OH)_(4)^(-) in the leachate,from which high-purity borax pentahydrate could be prepared by CO_(2) carbonation.
基金the National Natural Science Foundation of China(No.50772131)the National High-tech R&D Program of China(863 Program)(No.2011AA322100)+1 种基金the Key Project of Chinese Ministry of Education(No.106086)the Fundamental Research Funds for the Central Universities(No.2010YJ05)。
文摘A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%),namely,mesoporous silica capsule(MSC)with core-shell structure.Transmission electron microscopy(TEM),nitrogen adsorption and other characterization techniques were used to study the formation process of nano-microspheres.A new mechanism of self-adaptive concentration gradient regulation of silicon migration and recombination core-shell structure was proposed to explain the formation of a cavity in the MSC system.The core-shell design can enhance the specific surface area and pore volume while maintaining the monodispersity and mesoporous size.To study the water harvesting performance of MSC,solid silica nanoparticles(SSN)and mesoporous silica nanoparticles(MSN)were prepared.In a small atmospheric water collection test(25℃,40%RH),the water vapour adsorption and desorption kinetics of MSC,SSN,MSN and a commercial silica gel(CSG)were compared and analyzed.The results show that the MSC with mesoporous channels and core-shell structure can provide about 0.324 gwater/gadsorbent,79%higher than the CSG(0.181 gwater/gadsorbent).It is 25.1%higher than that of 0.259 gwater/gadsorbentof un-hollowed MSN and 980%higher than that of0.03 gwater/gadsorbentof un-hollowed SSN.The material has a large specific surface area and pore volume,simple preparation method and low cost,which provides a feasible idea for realising atmospheric water collection in arid and semi-arid regions.
基金the National Key R&D Program of China(No.2021YFB3701705).
文摘This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models.
基金supported by the National Key Research and Development Program(2022YFB4202200)the Fundamental Research Funds for the Central Universities and sponsored by Shanghai Pujiang Program(22PJ1413100)。
文摘Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.
基金supported by the Second Comprehensive Scientific Research Survey on the Tibetan Plateau[grant number 2019QZKK0103]the National Natural Science Foundation of China[grant numbers 42375071 and 42230610].
文摘The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.
基金supported by the National Natural Science Foundation of China(Grant Nos.52304044,52222402,52234003,52174036)Sichuan Science and Technology Program(Nos.2022JDJQ0009,2023NSFSC0934)+2 种基金Key Technology R&D Program of Shaanxi Province(2023-YBGY-30)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX030202)the China Postdoctoral Science Foundation(Grant No.2022M722638)。
文摘Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer interference for tight gas reservoirs are really limited,especially for those reservoirs in the presence of water.In this work,five types of possible inter-layer interferences,including both absence and presence of water,are identified for commingled production of tight gas reservoirs.Subsequently,a series of reservoir-scale and pore-scale numerical simulations are conducted to quantify the degree of influence of each type of interference.Consistent field evidence from the Yan'an tight gas reservoir(Ordos Basin,China)is found to support the simulation results.Additionally,suggestions are proposed to mitigate the potential inter-layer interferences.The results indicate that,in the absence of water,commingled production is favorable in two situations:when there is a difference in physical properties and when there is a difference in the pressure system of each layer.For reservoirs with a multi-pressure system,the backflow phenomenon,which significantly influences the production performance,only occurs under extreme conditions(such as very low production rates or well shut-in periods).When water is introduced into the multi-layer system,inter-layer interference becomes nearly inevitable.Perforating both the gas-rich layer and water-rich layer for commingled production is not desirable,as it can trigger water invasion from the water-rich layer into the gas-rich layer.The gas-rich layer might also be interfered with by water from the neighboring unperforated water-rich layer,where the water might break the barrier(eg weak joint surface,cement in fractures)between the two layers and migrate into the gas-rich layer.Additionally,the gas-rich layer could possibly be interfered with by water that accumulates at the bottom of the wellbore due to gravitational differentiation during shut-in operations.
文摘To eliminate the irrational supposition that condensed liquid water always falls immediately, specific water m?and maximum airborne specific water mm are introduced into the dynamic framework on non-uniform saturated moist atmosphere (m?is the ratio of the airborne liquid water mass to the moist air mass in unit cubage moist air, mm is its maximum value with , , and are airborne coefficient, vertical velocity and saturated specific humidity respectively). The balance equation between water vapor and airborne liquid water is derived. From the balance equation, a new formula of precipitate rate is got. The analysis shows that in the air stream with some upward vertical velocity ( ), the condensed liquid water can precipitate under the condition with (q is specific humidity) and? only, otherwise it is detained in the air and becomes airborne liquid water. Not only does precipitating liquid water contain condensed liquid water, but also contains converged and existing airborne liquid water. Following above discussion, improved dynamic equations on non-uniform saturated moist atmosphere are provided.
基金supported by the Open Research Fund of TPESER(Grant No.TPESER202205)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0101)。
文摘The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.