期刊文献+
共找到473,902篇文章
< 1 2 250 >
每页显示 20 50 100
The Influence of CO_(2) Cured Manganese Slag on the Performance and Mechanical Properties of Ultra-High Performance Concrete
1
作者 Ligai Bai Guihua Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1717-1730,共14页
The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this ma... The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this material,thereby mitigating their release into the natural surroundings.This study investigates the impact of CO_(2) cured MS on various rheological parameters,including slump flow,plastic viscosity(η),and yield shear stress(τ).Additionally,it assesses flexural and compressive strengths(f_(t) and f_(cu)),drying shrinkage rates(DSR),durability indicators(chloride ion migration coefficient(CMC),carbonization depth(CD)),and the leaching behavior of heavy metal elements.Microscopic examination via scanning electron microscopy(SEM)is employed to elucidate the underlying mechanisms.The results indicate that CO_(2) curing significantly enhances the slump flow of ultra-high performance concrete(UHPC)by up to 51.2%.Moreover,it reduces UHPC’sηandτby rates ranging from 0%to 52.7%and 0%to 40.2%,respectively.The DSR exhibits a linear increase corresponding to the mass ratio of CO_(2) cured MS.Furthermore,CO_(2) curing enhances both f_(t) and f_(cu) of UHPC by up to 28.7%and 17.6%,respectively.The electrical resistance is also improved,showing an increase of up to 53.7%.The relationship between mechanical strengths and electrical resistance follows a cubic relationship.The CO_(2) cured MS demonstrates a notable decrease in the CMC and CD by rates ranging from 0%to 52.6%and 0%to 26.1%,respectively.The reductions of leached chromium(Cr)and manganese(Mn)are up to 576.3%and 1312.7%,respectively.Overall,CO_(2) curing also enhances the compactness of UHPC,thereby demonstrating its potential to improve both mechanical and durability properties. 展开更多
关键词 CO_(2)curing manganese slag steel fibers mechanical strengths salt action
下载PDF
生成式人工智能赋能本科生科研能力培养——ChatGPT支持的CUREs教学模式
2
作者 吴忭 李凤鸣 胡艺龄 《现代远程教育研究》 北大核心 2024年第3期3-10,28,共9页
为促进高等教育中高素质创新人才培养,构建以学生为中心的科研训练与课程教学整合模式是有效途径。当前基于课程的本科生科研体验(CUREs)教学模式虽在增强学生对科学本质的理解等方面具有一定优势,但在激发学生研究动机方面存在一些不... 为促进高等教育中高素质创新人才培养,构建以学生为中心的科研训练与课程教学整合模式是有效途径。当前基于课程的本科生科研体验(CUREs)教学模式虽在增强学生对科学本质的理解等方面具有一定优势,但在激发学生研究动机方面存在一些不足。将支持高效反馈的生成式人工智能ChatGPT引入人机协作研究过程中,有助于改善学生的科研体验,推动科研项目化学习。通过对ChatGPT支持的CUREs教学模式的设计与实施,发现该模式有助于培养学生的科研能力,提升他们的科研知识水平、科研技能水平和科研情感水平。尽管学生认同该教学模式的有效性和易用性,但其实际效果的发挥仍需人类智慧的参与。未来需要持续升级和优化生成式人工智能技术,确保技术应用高效且符合伦理标准;应用生成式人工智能技术重构教学模式,并通过长周期、跨场域实践检验其应用效果;强调人工智能与人类智慧的互补协作,真正实现生成式人工智能赋能学生科研能力提升。 展开更多
关键词 生成式人工智能 ChatGPT 科研能力 cures 教学模式
下载PDF
Influence of subsequent curing on water sorptivity and pore structure of steam-cured concrete 被引量:5
3
作者 贺智敏 龙广成 谢友均 《Journal of Central South University》 SCIE EI CAS 2012年第4期1155-1162,共8页
Steam-cured condition is found to cause larger porosity and worse properties of concrete compared with normal curing condition. For the sake of seeking effective measurements to eliminate this bad effect of steam-cure... Steam-cured condition is found to cause larger porosity and worse properties of concrete compared with normal curing condition. For the sake of seeking effective measurements to eliminate this bad effect of steam-cured condition on concrete, the water sorptivity and pore structure of steam-cured concretes exposed to different subsequent curing conditions were investigated after steam-curing treatment. The capillary absorption coefficient and porosity of the corresponding concretes were analyzed, and their mechanisms were also discussed. The results indicate that water sorptivity and pore structure of steam-cured concrete are greatly influenced by the curing condition used in subsequent ages. Exposure steam-cured concrete to air condition has an obviously bad effect on its properties and microstructures. Adopting subsequent curing of immersing steam-cured concrete into about 20℃ water after steam curing period can significantly decrease its capillary absorption coefficient and porosity. Steam-cured concrete with 7 d water curing has minimum capillary absorption coefficient and total porosity. Its water sorptivity is decreased by 23% compared with standard curing concrete and the porosity is 9.6% lower. Moreover, the corresponding gradient of water sorptivity and porosity of steam-cured concrete both decrease, thus mictostructure of concrete becomes more homogeneous. 展开更多
关键词 steam-cured concrete water sorptivity pore structure curing condition
下载PDF
Various admixtures to mitigate the long-term strength retrogression of Portland cement cured under high pressure and high temperature conditions 被引量:2
4
作者 Jiankun Qin Xueyu Pang +2 位作者 Ashok Santra Guodong Cheng Hailong Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期191-203,共13页
In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sour... In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases. 展开更多
关键词 High pressure and high temperature(HPHT) Strength retrogression Young’s modulus water permeability Rietveld method
下载PDF
Synthesis of a Novel Core-shell Type Acrylic-polyurethane Hybrid Emulsion Containing Siloxane and Fluorine as well as Water and the Oil Resistances of Cured Film 被引量:7
5
作者 Jing CHAO Xing Yuan ZHANG Jia Bing DAI Zhen GE Lin Lin FENG 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第8期1121-1124,共4页
Siliconated polyurethane (Si-PU) was synthesized using isophorone diisocyanate (IPDI), hydroxybutyl-terminated polydimethylsiloxane (PDMS), polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG),... Siliconated polyurethane (Si-PU) was synthesized using isophorone diisocyanate (IPDI), hydroxybutyl-terminated polydimethylsiloxane (PDMS), polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG), 1,6-hexanediol (HDO), dimethylol propionic acid (DMPA) and triethylamine (TEA). Based on butyl acrylate (BA), 2, 2, 2-trifluoroethylmethacrylate (TFEMA) and Si-PU as a seed emulsion, a novel core-shell type acrylic-polyurethane hybrid emulsion, containing siloxane and fluorine (F-Si-PU), was prepared by seeded emulsion polymerization. The contents of siloxane and fluorine were determined according to the feed ratio. Fourier transform infrared spectroscopy (FTIR) was used to identify the chain structures of Si-PU and F-Si-PU. Investigation of transmission electron microscopy (TEM) confirmed the core-shell structure of F-Si-PU emulsion. Measurement results of water contact angle and the swelling ratio in water and n-octane for cured film showed that the water and the oil resistances for F-Si-PU had been significantly improved at a suitable content of fluorine and siloxane. 展开更多
关键词 CORE-SHELL SILOXANE FLUORINE acrylic-polyurethane water and oil resistance.
下载PDF
Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell 被引量:2
6
作者 Chao Liu Zhen Geng +6 位作者 Xukang Wang Wendong Liu Yuwei Wang Qihan Xia Wenbo Li Liming Jin Cunman Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期348-369,I0009,共23页
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t... Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 HYDROGEN water electrolysis Anion exchange membrane Electrolysis cell
下载PDF
Insights on advanced substrates for controllable fabrication of photoanodes toward efficient and stable photoelectrochemical water splitting 被引量:1
7
作者 Huilin Hou Gang Shao +2 位作者 Yang Wang Wai‐Yeung Wong Weiyou Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期164-221,共58页
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p... Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed. 展开更多
关键词 hydrogen PHOTOANODE PHOTOELECTROCHEMICAL SUBSTRATES water splitting
下载PDF
Experimental study on the effect of water absorption level on rockburst occurrence of sandstone 被引量:1
8
作者 Dongqiao Liu Jie Sun +3 位作者 Pengfei He Manchao He Binghao Cao Yuanyuan Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期136-152,共17页
To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and ... To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation. 展开更多
关键词 ROCKBURST water Prevention effect Crack evolution
下载PDF
Effect of CSH Crystal Nucleus on Steam-Free Cured Fly Ash Precast Concrete Components
9
作者 Ruyi Luo Yanyan Hu +2 位作者 Tingshu He Xiaodong Ma Yongdong Xu 《Journal of Renewable Materials》 EI 2023年第9期3485-3500,共16页
The measures of steam curing and early-strengthening agents to promote the precast components to reach the target strength quickly can bring different degrees of damage to the concrete.Based on this,the new nanomateri... The measures of steam curing and early-strengthening agents to promote the precast components to reach the target strength quickly can bring different degrees of damage to the concrete.Based on this,the new nanomaterial CSH-the hydration product of cement effectively solves these measures’disadvantages,such as excessive energy consumption,thermal stress damage,and the introduction of external ions.In this paper,the effect of CSH on the early strength of precast fly ash concrete components was investigated in terms of setting time,workability,and mechanical properties and analyzed at the microscopic level using hydration temperature,XRD,and SEM.The results showed that under the same workability,CSH could significantly reduce the amount of admixture,shorten the final setting time,almost not affect the initial setting time,and accelerate the hydration of cement.At the optimum dose of 5%,the mechanical properties of the specimens were improved by more than 98%within 12 h of hydration,resulting in an earlier release time of 12 h and no risk of strength inversion later.The results of this paper give theoretical support to the behavior of precast components under steam-free curing. 展开更多
关键词 Fly ash concrete prefabricated components steam-free curing CSH crystal nucleus TOBERMORITE
下载PDF
Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions 被引量:2
10
作者 Jingui Wei Qiang Chai +5 位作者 Wen Yin Hong Fan Yao Guo Falong Hu Zhilong Fan QimingWang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期122-140,共19页
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H... The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas. 展开更多
关键词 water and N reduction plant density MAIZE grain yield N uptake compensation effect
下载PDF
Decomposition Behavior and Decomposition Products of Epoxy Resin Cured with MeHHPA in Near-critical Water 被引量:1
11
作者 宫显云 刘宇艳 +1 位作者 JIA Xuegang SHAN Guohua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期781-786,共6页
A kind of chemical method that used water as the liquid reaction medium to decompose epoxy resin was studied. The thermosetting epoxy resin was decomposed successfully under the condition of near-critical water. The d... A kind of chemical method that used water as the liquid reaction medium to decompose epoxy resin was studied. The thermosetting epoxy resin was decomposed successfully under the condition of near-critical water. The decomposition rate of epoxy resin raised rapidly as the reaction time and reaction temperature increased. The decomposition reaction products were characterized by infra-red spectra and gas chromatography-mass spectrometry. The phenol, isopropylphenol, 4, 4'-(1-methylethylidene) bis-phenol were found as the main compounds in liquid products, which were common monomers from epoxy resin. When reaction was carried out at the temperature of 260℃ -300 ℃, the decomposition mechanism of epoxy resin was envisaged as the ether and ester bonds cracking. 展开更多
关键词 epoxy resin near-critical water DECOMPOSITION MECHANISM
下载PDF
CsABF3-activated CsSUT1 pathway is implicated in pre-harvest water deficit inducing sucrose accumulation in citrus fruit 被引量:1
12
作者 Xiaochuan Ma Yuanyuan Chang +6 位作者 Feifei Li Junfeng Yang Li Ye Tie Zhou Yan Jin Ling Sheng Xiaopeng Lu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期103-114,共12页
Pre-harvest water deficit(PHWD)plays an important role in sugar accumulation of citrus fruit.However,the mechanism is not known well.Here,it was confirmed that PHWD promoted sucrose accumulation of citrus fruit,but ha... Pre-harvest water deficit(PHWD)plays an important role in sugar accumulation of citrus fruit.However,the mechanism is not known well.Here,it was confirmed that PHWD promoted sucrose accumulation of citrus fruit,but had limited effect on fructose,glucose and total acid.A sucrose transporter,Cs SUT1,which localizes to the plasma membrane,was demonstrated to function in sucrose transport induced by PHWD.Compared to wild-type,Cs SUT1 overexpression in citrus calli stimulated sucrose,fructose and glucose accumulation,while its silencing in juice sacs reduced sucrose accumulation.Increased sugar accumulation in transgenic lines enhanced plant drought tolerance,and resulted in decreased electrolyte leakage,malondialdehyde and hydrogen peroxide contents,as well as increased superoxide dismutase activity and proline contents.An abscisic acid(ABA)-responsive transcription factor,Cs ABF3,was found with a same expression pattern with Cs SUT1 under PHWD.Yeast one-hybrid,electrophoretic mobility shift assay and dual-luciferase assays all revealed that Cs ABF3 directly bound with the Cs SUT1 promoter by ABA responsive elements.When Cs ABF3 was overexpressed in citrus calli,the sucrose,fructose and glucose concentration increased correspondingly.Further,transgenic studies demonstrated that Cs ABF3 could affect sucrose accumulation by regulating Cs SUT1.Overall,this study revealed a regulation of Cs ABF3 promoting Cs SUT1 expression and sucrose accumulation in response to PHWD.Our results provide a detail insight into the quality formation of citrus fruit. 展开更多
关键词 CITRUS water deficit Pre-harvest SUCROSE CsABF3 CsSUT1
下载PDF
Mechanical properties and acoustic emission characteristics of soft rock with different water contents under dynamic disturbance 被引量:1
13
作者 Yujing Jiang Lugen Chen +4 位作者 Dong Wang Hengjie Luan Guangchao Zhang Ling Dong Bin Liang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期135-148,共14页
Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties... Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage. 展开更多
关键词 Dynamic disturbance Soft rock Cyclic loading Acoustic emission water content
下载PDF
Influence of water coupling coefficient on the blasting effect of red sandstone specimens 被引量:1
14
作者 Yang Li Renshu Yang +1 位作者 Yanbing Wang Dairui Fu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期148-166,共19页
This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation i... This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone.The analysis is based on the theories of detonation wave and elastic wave,focusing on the variation in wall pressure of the blasting holes.Using DDNP explosive as the explosive load,blasting tests were conducted on red sandstone specimens with four different water coupling coefficients:1.20,1.33,1.50,and 2.00.The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients.Additionally,the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage.CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock.Additionally,the volume fractal dimension and damage degree of the post-blasting specimens are calculated.The findings are then combined with numerical simulation to facilitate auxiliary analysis.The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone,enabling more of the explosion energy to be utilized for crack propagation following the explosion.The specimens exhibited distinct failure patterns,resulting in corresponding changes in fractal dimensions.The simulated pore wall pressure–time curve validated the derived theoretical results,whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium.As the water coupling coefficient increases,the buffering effect of the water medium becomes increasingly prominent. 展开更多
关键词 water coupling coefficient Radial uncoupled charge Numerical simulation Fractal dimension
下载PDF
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design 被引量:1
15
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts water splitting Hydrogen production Catalytic mechanism Synthesis technique Optimization design
下载PDF
Investigation of hydroxyl-terminated polybutadiene propellant breaking characteristics and mechanism impacted by submerged cavitation water jet 被引量:1
16
作者 Wenjun Zhou Meng Zhao +3 位作者 Bo Liu Youzhi Ma Youzhi Zhang Xuanjun Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期559-572,共14页
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac... A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms. 展开更多
关键词 Submerged cavitation water jet Hydroxyl-terminated polybutadiene propellant Breaking characteristics Failure modes
下载PDF
Recent advances and future prospects on Ni_(3)S_(2)-Based electrocatalysts for efficient alkaline water electrolysis 被引量:1
17
作者 Shiwen Wang Zhen Geng +4 位作者 Songhu Bi Yuwei Wang Zijian Gao Liming Jin Cunman Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期659-683,共25页
Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic... Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 Alkaline water electrolysis HYDROGEN ELECTROCATALYSTS Ni_(3)S_(2)
下载PDF
Analysis of faulting destruction and water supply pipeline damage from the first mainshock of the February 6,2023 Türkiye earthquake doublet 被引量:1
18
作者 Xiaoqing Fan Libao Zhang +2 位作者 Juke Wang Yefei Ren Aiwen Liu 《Earthquake Science》 2024年第1期78-90,共13页
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw... In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized. 展开更多
关键词 Türkiye earthquake fault displacement near-fault ground motion velocity pulse water supply pipeline
下载PDF
Some Indicators of the Water Regime in Some Varieties Belonging to the Monarda didyma L. Genus in the Conditions of Tashkent (Uzbekistan)
19
作者 Mamadalieva Vakhobjon Kizi Madina Rakhimova Tashkhanim 《American Journal of Plant Sciences》 CAS 2024年第5期374-386,共13页
In this article, the names of 3 varieties of Monarda didyma L., which are considered to be introduced species, some indicators of the water regime in the climatic conditions of Uzbekistan: the amount of water in the l... In this article, the names of 3 varieties of Monarda didyma L., which are considered to be introduced species, some indicators of the water regime in the climatic conditions of Uzbekistan: the amount of water in the leaves, water deficit, water storage capacity were studied in spring and summer, and seasonal changes were determined. According to these indicators of the water regime, the studied varieties belong to the labile water regime, high green mass (centner), seed yield (how many grams), resistance to diseases and pests have been determined, which shows that it is promising for introduction in the conditions of our republic. Therefore, it is recommended to breed these varieties in the foothills and hilly regions of Uzbekistan, where the amount of precipitation is more than 400 - 500 mm. 展开更多
关键词 Uzbekistan Tashkent Monarda didyma Bergama Jar-Ptitsa Cambridge Scarlet water Regime water Quantity water Shortage water Storage Capacity Labile
下载PDF
Collaborative Efforts and Strategies for Cholera Outbreak Control in Garissa County, Kenya: Implementation of Water Quality Monitoring Interventions
20
作者 Michael Habtu Mark Nanyingi +14 位作者 Ali A. Hassan Abdiwahid M. Noor Joel Mutyandia Muli Alan Mwika Julius Wekesa Ahmed Fidhow Diba Dulacha Landry Kabego Ishata Nannie Conteh Andre Arsene Bita Fouda Sonia Chene Aden H. Ibrahim Ahmed Nadhir Omar Martins C. Livinus Abdourahmane Diallo 《Journal of Water Resource and Protection》 CAS 2024年第2期123-139,共17页
A multi-faceted Case Area Targeted Intervention (CATI) approach emphasizing the integration of Water, Sanitation and Hygiene (WASH) interventions and Oral Cholera Vaccine (OCV) campaign was employed to respond to the ... A multi-faceted Case Area Targeted Intervention (CATI) approach emphasizing the integration of Water, Sanitation and Hygiene (WASH) interventions and Oral Cholera Vaccine (OCV) campaign was employed to respond to the outbreak of cholera in Garissa County. Drinking water sources in areas heavily impacted by cholera were systematically mapped and tested for microbiological quality. The quality assessment was carried out in April 2023 during an ongoing cholera outbreak in the county. A total of 109 samples were collected and tested for thermotolerant coliforms and other in situ parameters. The finding revealed that more than 87% of the samples did not meet the World Health Organization (WHO) standard for thermotolerant coliforms;and 30% had turbidity values above the recommended threshold values. None of the 109 samples had any traceable residual chlorine. Following these findings, the county government implemented the targeted interventions which resulted in a positive impact in the fight against cholera. The WHO supported key interventions which included capacity building in water quality monitoring and prepositioning of critical WASH commodities to the cholera affected areas. 展开更多
关键词 CHOLERA Drinking water Household water Treatment Kenya
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部