期刊文献+
共找到8,951篇文章
< 1 2 250 >
每页显示 20 50 100
Spatial-temporal Variation Characteristics of Water Quality in the Lower Reaches of the Nenjiang River
1
作者 Xiangzhe MENG Jing WANG +4 位作者 Yinglin XIE Fei PENG Chunsheng WEI Xin TIAN Lunwen WANG 《Meteorological and Environmental Research》 2024年第1期67-71,共5页
As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wet... As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction. 展开更多
关键词 Lower reaches of the Nenjiang River water quality Spatial-temporal variation
下载PDF
Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance
2
作者 LI Shuai GU Tianfeng +2 位作者 WANG Jiading WANG Fei LI Pu 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2283-2304,共22页
The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t... The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow. 展开更多
关键词 Debris flow watersediment separation structure Grille spacing Performance regulation effect
下载PDF
Spatio-temporal variation of trace elements distributed over surface water of Upper Ganga River Basin in Western Himalayan Region
3
作者 Deepika DIMRI Ambika KUMAR +1 位作者 DeepakKumar MISHRA Archana SHARMA 《Journal of Mountain Science》 SCIE CSCD 2023年第1期145-162,共18页
The rivers draining from the Himalayan range distribute enormous amount of fresh water to the people living in downstream regions.Trace metals flowed with river water can lead to serious impact on ecological system an... The rivers draining from the Himalayan range distribute enormous amount of fresh water to the people living in downstream regions.Trace metals flowed with river water can lead to serious impact on ecological system and human health.Nevertheless,the documentation on trace elements of Himalayan rivers is inadequately documented.The current study deals with the spatial and temporal variability of the major and trace elements of Ganga river water in epirhithron,metarhithron and hyporhithron zone belonging to Himalayan segment.Water samples from nineteen monitoring locations were collected in pre-monsoon(May-June),monsoon(AugustSeptember)and post-monsoon(December)seasons and subjected to be assessed for 20 elements(Ag,Al,Ba,Cd,Ca,Cr,Cu,Fe,Ga,K,Mn,Mg,Na,Ni,Pb,Sr,Th,U,Zn,and Zr)using ICP-OES(Inductively Coupled Plasma-Optical Emission Spectrometer).Different water pollution indexes such as HPI(Heavy Metal Pollution Index),MI(Metal Index)and PI(Pollution Index)were used to describe current water quality status at each monitoring station under particular classified ecological zone.The studied stations in hyporhithron zone had the value of Metal Index(MI>1),indicating threshold of warning.Further,the highest values of HPI in hyporhithron zone correspond to poor water quality status.Sites with poor water quality were also found to be contaminated as per the Pollution Index(PI),exhibiting high concentrations for element(Fe).However,the epirhithron and metarhithron zone in Himalayan segment showed excellent water quality mainly contributed from natural sources.Cluster Analysis(CA)and Principal Component Analysis(PCA)were applied to identify the main influential sources for Ganga river water pollution.The Kriging interpolation method was also applied to prepare spatial distribution map of computed indexes(HPI,MI,and PI).With the help of index of local Moran’s I(LMI),identified spatial clusters and spatial outliers revealed the elevated concentration of most elements in hyporhithron zone.The dataset presented in this study would be convenient for government officials in developing more effective management policies and necessary steps to check and monitor the Ganga river water quality.It was also suggested that further investigations in terms of trace elemental sources and their role in self-purification properties of Ganga water can be addressed in future. 展开更多
关键词 Trace elements Spatial variation Temporal variation Surface water Ganga River Basin ICP-OES
下载PDF
Spatial and Temporal Variations of Dissolved Inorganic Nutrients and Relationship with Phytoplankton Density in Coastal Water of Kudat, Sabah, Malaysia
4
作者 Sujjat Al Azad Mezzy Rynee Romin Ejria Saleh 《Journal of Geoscience and Environment Protection》 2023年第12期229-240,共12页
Coastal areas of Kudat are dominated by fisheries activities. Development of infrastructure for fishing facilities like jetty, landing centre and other human activities can increase the loading of nutrients in coastal... Coastal areas of Kudat are dominated by fisheries activities. Development of infrastructure for fishing facilities like jetty, landing centre and other human activities can increase the loading of nutrients in coastal area. High load of nutrients accelerates the blooming of phytoplankton and in long run creates eutrophication. This study was conducted to determine the temporal and spatial variations of nutrients and relationship of phytoplankton density in coastal water of Kudat. Five stations were selected with three replicated in the study area. Phytoplankton samples, water samples and in situ environmental parameters were collected from May 2019 to February 2020 (10 months). The highest concentration of nitrate (NO<sub>3</sub>) was observed in May 2019, but the highest concentration of phosphate (PO<sub>4</sub>) observed in July 2019. On the other hand, higher concentrations of phosphate (PO<sub>4</sub>) were determined than the concentration of nitrate (NO<sub>3</sub>) in all stations during study period. The distribution of nutrients is due to monsoonal runoff from surrounding areas as well due to anthropogenic activities. Among the 21 species three of them are from harmful algal species and but dominated by diatoms. Poor relationship observed among the dissolved inorganic nutrients and phytoplankton density, indicates that the relationship does not depend on only nutrients but with favourable environmental parameters. Anthropogenic activity can lead to excessive load of nutrients in Kudat coastal water and in long run cause eutrophication problem in ecosystem with potentially larger economic impacts in a long run period. 展开更多
关键词 NITRATE PHOSPHATE Monthly variations Anthropogenic Activity and Kudat Coastal water
下载PDF
Spatiotemporal Variation Characteristics of Water Quality in the Yinma River
5
作者 Shukun JIANG Jing WANG +3 位作者 Yinglin XIE Chunsheng WEI Xin TIAN Lunwen WANG 《Meteorological and Environmental Research》 2023年第6期64-68,共5页
As an important river in the central part of Jilin Province, the Yinma River plays a crucial role in the daily lives of the people in Jilin Province. In this paper, 15 cross sections were selected in the Yinma River b... As an important river in the central part of Jilin Province, the Yinma River plays a crucial role in the daily lives of the people in Jilin Province. In this paper, 15 cross sections were selected in the Yinma River basin. Based on the water quality monitoring data from 2012 to 2021, referring to the Environmental Quality Standards for Surface Water (GB 3838-2002) and historical monitoring data of the river, dissolved oxygen (DO), five-day biochemical oxygen demand (BOD 5), permanganate index (COD Mn ), chemical oxygen demand (COD), ammonia nitrogen (NH 4-N), total phosphorus (TP), and total nitrogen (TN) were determined as 7 evaluation indicators, and the water quality of 15 cross sections in the Yinma River basin was comprehensively evaluated. A characteristic analysis was conducted on the water quality of the Yinma River, and its pollution sources were identified. Based on the conclusions, constructive control measures were proposed. 展开更多
关键词 Yinma River water quality variation characteristics
下载PDF
Response of delta sedimentary system to variation of water and sediment in the Yellow River over past six decades 被引量:7
6
作者 PENG Jun CHEN Shenliang 《Journal of Geographical Sciences》 SCIE CSCD 2010年第4期613-627,共15页
In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment ... In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×10^9 m^3 and 3.41×10^8 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×10^10 m^3 and 2.42×10^8 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×10^8 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×10^8t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4-26.0 kg/m^3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997. 展开更多
关键词 Yellow River water discharge sediment load human activities DELTA
下载PDF
Water Gauge Image Denoising Model Based on Improved Adaptive Total Variation
7
作者 SHI Zhenting ZHOU Xianchun +2 位作者 ZHANG Ying LI Ting LU Siqi 《Instrumentation》 2023年第1期59-68,共10页
As an important part of water level warning in water conservancy projects,often due to the influence of environmental factors such as light and stains,the acquired water gauge images have sticky,broken and bright spot... As an important part of water level warning in water conservancy projects,often due to the influence of environmental factors such as light and stains,the acquired water gauge images have sticky,broken and bright spot conditions,which affect the identification of water gauges.To solve this problem,a water gauge image denoising model based on improved adaptive total variation is proposed.Firstly,the regular term exponent in the adaptive total variational equation is changed to an inverse cosine function;secondly,the differential curvature is used to distinguish the image noise points and increase the smoothing strength at the noise points;finally,according to the characteristics of the gradient mode and adaptive gradient threshold after Gaussian filtering,the New model can adaptively denoise in the smooth area and protect the edge area,so as to have the characteristics of both edge-preserving denoising.The experimental results show that the new model has a great improvement in image vision,higher iteration efficiency and an average increase of 1.6 dB in peak signal-to-noise ratio,and an average increase of 9%in structural similarity,which is more beneficial to practical applications. 展开更多
关键词 water Gauge Image Adaptive Total variation Differential Curvature Gradient Mode Adaptive Gradient Threshold
下载PDF
Spatial Variation of P and N in Water and Sediments of Dianchi Lake, China 被引量:29
8
作者 LUEJun-Jie, YANGHao GAOLi YUTian-Ying 《Pedosphere》 SCIE CAS CSCD 2005年第1期78-83,共6页
Dianchi Lake is one of the most eutrophic lakes in China. In order to understand this eutrophication and to help control the pollution, this research investigated the spatial distribution of Kjeldahl nitrogen (K-N) an... Dianchi Lake is one of the most eutrophic lakes in China. In order to understand this eutrophication and to help control the pollution, this research investigated the spatial distribution of Kjeldahl nitrogen (K-N) and total phosphorus(TP) through analysis of bottom water and sediment (3 depths) samples collected at 118 sites around Dianchi Lake. The concentrations of K-N and TP for the lake bottom water in the Caohai part of the lake were much higher than those in the Waihai part, generally decreasing from north to south. In the sediments, the K-N concentration was higher in the Caohai part and the middle of the Waihai part. On the other hand, TP in the sediments was greater in the southern and western parts. Both K-N and TP had similar spatial distributions for the sediment samples of three different depths.Vertically, the K-N and TP concentration in the sediments decreased with an increase in depth. This was evidence that eutrophication and pollution of Dianchi Lake was becoming gradually more severe. Exterior factors including uncontrolled input of domestic and industrial effluents as well as non-point pollution around the lake were the main reasons for serious eutrophication; therefore, controlling these was the first step in reducing eutrophication of Dianchi Lake. 展开更多
关键词 空间分布 滇池 养分沉积 水体污染
下载PDF
Temporal Variations of Water Discharge and Sediment Load of Huanghe River,China 被引量:4
9
作者 LIU Feng CHEN Shenliang +1 位作者 PENG Jun CHEN Guangquan 《Chinese Geographical Science》 SCIE CSCD 2012年第5期507-521,共15页
Based on the data from gauging stations,the changes in water discharge and sediment load of the Huanghe (Yellow)River were analyzed by using the empirical mode decomposition(EMD)method.The results show that the period... Based on the data from gauging stations,the changes in water discharge and sediment load of the Huanghe (Yellow)River were analyzed by using the empirical mode decomposition(EMD)method.The results show that the periodic oscillation of water discharge and sediment load of the Huanghe River occurs at the interannual,decadal,and multi-decadal scales,caused by the periodic oscillations of precipitation,and El Nio/Southern Oscillation(ENSO)affects water discharge by influencing precipitation distribution and contributes to periodic varations in precipitation and water discharge at interannual timescale.The water discharge and sediment load of the Huanghe River have decreased since the 1960s under the influence of precipitation and huamn activities,and human activities attribute more than precipitation to the reduction in the water discharge and sediment load,furthermore,water abstraction and water-soil conservation practices are the main causes of the decrease in water discharge and sediment load,respectively.The reduction in sediment load has directly impacted on the lower reaches of the Huanghe River and the river delta, causing considerable erosion of the river channel in the lower reaches since the 1970s along with River Delta changing siltation into erosion around 2000. 展开更多
关键词 输沙量 黄河 时空变化 径流量 年际时间尺度 中国 经验模式分解 降水分布
下载PDF
Impact of Water-Sediment Regulation on Variations of Amino Acids in the Middle-Lower Yellow River, China 被引量:1
10
作者 ZHANG Kun ZOU Li +3 位作者 DAI Qunying WANG Jian JIANG Xueyan LIANG Shengkang 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第2期369-376,共8页
In order to examine the impacts of water-sediment regulation on regional carbon cycling,we collected water,particulate and sediment samples from the middle-lower Yellow River in late June and early July,2015 and analy... In order to examine the impacts of water-sediment regulation on regional carbon cycling,we collected water,particulate and sediment samples from the middle-lower Yellow River in late June and early July,2015 and analyzed their specific amino acids(AA),DOC,POC,and bacteria abundance.Summarized by 14 specific AA,the total hydrolysable AA(THAA),particulate AA(PAA),and sediment AA(SAA)varied in ranges of 2.29-9.05μmol L^-1,5.22-22.96μmol L^-1,and 81.7-137.19μg g^-1 dry weight.After the regulation,dissolved free AA(DFAA)decreased by 29%while DCAA increased by 72%.These variations suggested that DFAA were further degraded,while DCAA molecules were further activated.Meanwhile,PAA increased almost 4 times as many as those before regulation,and SAA increased as well.After regulation,the amounts of bioactive amino acids(Asp,Glu and Gly)increased in THAA but decreased in PAA,with little changes in SAA.The ratios of Asp/Gly in different phases increased after regulation,indicating the AA contributions were promoted by calcareous organisms rather than by siliceous organisms.Multiple correlation analysis showed that PAA was primary representatives of AA and organic carbon,followed by DCAA and POC.Moreover,bacterial reproduction played a key role in shaping the AA compositions and properties,followed by the redox condition and acid-base balance.The results of this study provided a clear evidence for the effects of water-sediment regulation on regional biogeochemistry of organic carbon in the middle-lower Yellow River. 展开更多
关键词 the middle-lower Yellow River water-sediment regulation amino acids organic carbon
下载PDF
Spatial and Temporal Patterns of Variation in Environmental Quality of Water and Sediments of Streams in Mined and Unmined Areas with Emphasis on Mercury (Hg) and Arsenic (As)
11
作者 Stephen T. Annan Peter O. Sanful +1 位作者 George Lartey-Young Rebecca K. Yandam 《Journal of Geoscience and Environment Protection》 2018年第9期125-140,共16页
Heavy metal pollution from both anthropogenic and natural processes can have significant effect on environmental quality of stream and river systems. However, in Ghana, heavy metal pollution of waterbodies is attribut... Heavy metal pollution from both anthropogenic and natural processes can have significant effect on environmental quality of stream and river systems. However, in Ghana, heavy metal pollution of waterbodies is attributed mainly to mining activities but the role of natural mechanisms in altering stream water and sediment quality in relation to heavy metals has received little attention. Spatial and temporal variation in water quality parameters and heavy metal concentrations in water and sediments were studied comparatively in a river and two streams in a gold-rich watershed impacted by heavy mining activities. Samples were collected monthly over a twelve-month period from November 2010 to October 2011 from upstream (unmined) and downstream (mined) sections of the studied streams. Parameters measured include temperature, dissolved oxygen, conductivity, pH, turbidity, colour, mercury (Hg) and arsenic. High spatial variability of water quality parameters was found. Hg concentrations in water were extremely low in both upstream and downstream areas. Maximum geochemical background levels of Hg in unmined pristine areas were 2.45 mg/g whilst arsenic was 29.10 mg/g. By contrast, gold-mined downstream areas recorded Hg and arsenic concentrations of 8.75 mg/g and 82.53 mg/g in stream sediments respectively. Levels of Hg and arsenic in sediments were several orders of magnitude greater than concentrations in surface water in downstream sections and this may be explained by substances originating from mining activities, upstream transport or remobilized sedimented materials in the overlying water column. Our study showed that both natural and human activities may contribute to heavy metal pollution in the highly mineralized watershed of the Pra River Basin. Human factors are however likely to amplify the natural background levels of heavy metals. 展开更多
关键词 water Quality Mining MERCURY ARSENIC Stream sedimentS
下载PDF
Influence factors of phosphorus variation regularity in sediment-water system
12
作者 Shaoyong LU Xiangcan JIN Jianning GUO 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期257-257,共1页
关键词 沉积物 消毒方法 水体污染 污染化学
下载PDF
Seasonal variations of adsorption/desorption equilibrium concentrations of P at water-sediment interface in the Meiliang Bay, Taihu Lake, China
13
作者 Xia JIANG Xiangcan JIN Dongmei LIU 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期164-165,共2页
关键词 太湖 吸附作用 季节变化 交互作用 水文化学
下载PDF
Seasonal variations of adsorption/desorption equilibrium concentrations of P at water-sediment interface in different trophic states of Taihu Lake, China
14
作者 Xiangcan JIN Xia JIANG Dongmei LIU 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期164-164,共1页
关键词 太湖 季节变化 吸附作用 水文化学 交互作用
下载PDF
Impact of Forestry Interventions on Groundwater Recharge and Sediment Control in the Ganga River Basin 被引量:1
15
作者 Ombir Singh Saswat Kumar Kar Nimmala Mohan Reddy 《Open Journal of Forestry》 2023年第1期13-31,共19页
Water related services of natural infrastructure will help to combat the risk of water crisis, and nature-based solutions involve the management of ecosystems to mimic or optimize the natural processes for the provisi... Water related services of natural infrastructure will help to combat the risk of water crisis, and nature-based solutions involve the management of ecosystems to mimic or optimize the natural processes for the provision and regulation of water. Forested areas provide environmental stability and supply a high proportion of the world’s accessible freshwater for domestic, agricultural, industrial and ecological needs. The present work on “Forestry Interventions for Ganga” to rejuvenate the river is one of the steps toward the Ganga River rejuvenation programme in the country. The consequences of forestry interventions for Ganga will be determined on the basis of water quantity and water quality in the Ganga River. The study conservatively estimated the water savings and sedimentation reduction of the riverscape management in the Ganga basin using the Soil Conservation Service Curve Number (SCS-CN) & GEC, 2015 and Trimble, 1999 & CWC, 2019 methodologies, respectively. Forestry plantations and soil and moisture conservation measures devised in the programme to rejuvenate the Ganga River are expected to increase water recharge and decrease sedimentation load by 231.011 MCM&#183;yr<sup>-1</sup> and 1119.6 cubic m&#183;yr<sup>-1</sup> or 395.20 tons&#183;yr<sup>-1</sup>, respectively, in delineated riverscape area of 83,946 km<sup>2</sup> in Ganga basin due to these interventions. The role of trees and forests in improving hydrologic cycles, soil infiltration and ground water recharge in Ganga basin seems to be the reason for this change. Forest plantations and other bioengineering techniques can help to keep rivers perennial, increase precipitation, prevent soil erosion and mitigate floods, drought & climate change. The bioengineering techniques could be a feasible tool to enhance rivers’ self-purification as well as to make river perennial. The results will give momentum to the National Mission of Clean Ganga (NMCG) and its Namami Gange programme including other important rivers in the country and provide inputs in understanding the linkages among forest structure, function, and streamflow. 展开更多
关键词 Bioengineering Measures Ganga River Basin sediment Control water Harvesting
下载PDF
Three-year Variations of Water, Energy and CO_2 Fluxes of Cropland and Degraded Grassland Surfaces in a Semi-arid Area of Northeastern China 被引量:15
16
作者 刘辉志 涂钢 +1 位作者 符淙斌 石立庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第6期1009-1020,共12页
Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seaso... Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m^-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003-05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003-05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area. 展开更多
关键词 water energy and flux semi-arid area eddy covariance seasonal and annual variation
下载PDF
Spatial and temporal variations of water quality in Cao-E River of eastern China 被引量:15
17
作者 CHEN Ding-jiang LU Jun +2 位作者 YUAN Shao-feng JIN Shu-quan SHEN Ye-na 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第4期680-688,共9页
Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of Ch... Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed Ⅰ, Ⅱ, Ⅳ and Ⅴ(0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed Ⅲ. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed Ⅰ and Ⅱ) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed Ⅲ, Ⅳ and Ⅴ) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes. 展开更多
关键词 spatial and temporal variations water quality point pollution nonpoint pollution Cao-E River
下载PDF
A preliminary study of variations of the Changjiang Diluted Water between August of 1999 and 2006 被引量:9
18
作者 ZHOU Feng XUAN Jiliang +1 位作者 NI Xiaobo HUANG Daji 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2009年第6期1-11,共11页
A large area hypoxia has been already reported respectively by two interdisciplinary surveys off the Changjiang Estuary since summer of 1999 and 2006. The bypoxic zone shows distinct year-to-year variations. Observed ... A large area hypoxia has been already reported respectively by two interdisciplinary surveys off the Changjiang Estuary since summer of 1999 and 2006. The bypoxic zone shows distinct year-to-year variations. Observed oceanographic data are first analysized and reveal a big difference for the Changjiang Diluted Water (CDW) between these two periods. These great changes are related to the tremendous reduction of the freshwater discharge and variations of wind fields between these two years. It is also found that the monthly mean intrusion of Kuroshio and its branches has increased in the northern East China Sea (ECS), but decreased in the southern ECS in August of 2006 as compared with 1999 on the base of general circulation models. Then, the Regional Ocean Modelling Systems is applied to the East China Sea to evaluate the contributions and relative importance of impacts from the river discharge, wind forcing and open boundary data. Our simulations reproduce the phenomena that more fresh water extends northeastward in 2006 and forms a negative SSS anomaly to the northeast of the river mouth as compared with 1999, which is consistent with observations. The five group numerical tests suggest that the wind forcing dominates the CDW variations followed by the Kuroshio and its branches. The study implies important roles played by hydrodynamic processes on the variability of hypoxic zone in the study areas. 展开更多
关键词 Changjiang Diluted water variationS DYNAMICS HYPOXIA
下载PDF
Seasonal variation of sedimentation in the Changjiang Estuary mud area 被引量:8
19
作者 GUO Zhigang,YANG Zuosheng,FAN Dejiang,PAN Yanjun(College of Marine Geosciences, Ocean University of China, Qingdao 266003, China) 《Journal of Geographical Sciences》 SCIE CSCD 2003年第3期348-354,共7页
Seasonal distributions of suspended matter and their sedimentary effect on the Changjiang Estuary mud area of the East China Sea were discussed, based on three cruise data of total suspended... Seasonal distributions of suspended matter and their sedimentary effect on the Changjiang Estuary mud area of the East China Sea were discussed, based on three cruise data of total suspended matter, temperature and salinity collected from the Changjiang Estuary and its adjacent area in summer and winter. The results show that the basic pattern of distributions of suspended matter in the study area is almost the same in winter and in summer. Sediments from Changjiang (Yangtze River) to the sea are chiefly trapped to the west of 123 o 15'E due to a strong obstruction of the Taiwan Warm Current. This suggests that these sediments are mainly transported and deposited in the inner shelf. The sediment supply, Taiwan Warm Current, and Zhejiang Coastal Current show a strong seasonal variation, which results in a strong seasonal variation of the sedimentary effect on this mud area. This mud area is a 'sink' of the Changjiang's sediment discharge to the sea and its sedimentation is stronger in summer and weaker in winter. 展开更多
关键词 suspended matter sedimentATION seasonal variation the Changjiang Estuary
下载PDF
Impacts of water quality variation and rainfall runoff on Jinpen Reservoir,in Northwest China 被引量:11
20
作者 Zi-zhen Zhou Ting-lin Huang +2 位作者 Wei-xing Ma Yang Li Kang Zeng 《Water Science and Engineering》 EI CAS CSCD 2015年第4期301-308,共8页
The seasonal variation characteristics of the water quality of the Jinpen Reservoir and the impacts of rainfall runoff on the reservoir were investigated. Water quality monitoring results indicated that, during the st... The seasonal variation characteristics of the water quality of the Jinpen Reservoir and the impacts of rainfall runoff on the reservoir were investigated. Water quality monitoring results indicated that, during the stable stratification period, the maximum concentrations of total ni- trogen, total phosphorus, ammonia nitrogen, total organic carbon, iron ion, and manganese ion in the water at the reservoir bottom on September 6 reached 2.5 mg/L, 0.12 mg/L, 0.58 mg/L, 3.2 mg/L, 0.97 mg/L, and 0.32 rag/L, respectively. Only heavy storm runoff can affect the main reservoir and cause the water quality to seriously deteriorate. During heavy storms, the stratification of the reservoir was destroyed, and the reservoir water quality consequently deteriorated due to the high-turbidity particulate phosphorus and organic matter in runoff. The turbidity and concentrations of total phosphorus and total organic carbon in the main reservoir increased to 265 NTU, 0.224 mg/L, and 3.9 mg/L, respectively. Potential methods of dealing with the water problems in the Jinpen Reservoir are proposed. Both in stratification and in storm periods, the use of measures such as adjusting intake height, storing clean water, and releasing turbid flow can be helpful to safeguarding the quality of water supplied to the water treatment plants. 展开更多
关键词 water quality Seasonal variation RAINFALL Impact of storm runoff Intake height adjustment
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部