In order to rapidly respond to the complex and mutational market, a new facility layout plan based on cellular manufacturing is proposed, which gives consideration to high efficiency and flexibility. The plan designs ...In order to rapidly respond to the complex and mutational market, a new facility layout plan based on cellular manufacturing is proposed, which gives consideration to high efficiency and flexibility. The plan designs two phases of integrated cell layout, i.e., cell construction and cell system layout, on the condition of adding/removing machines. First, in view of the costs of logics and machine-relocation, the cell construction based on the alternative processing routes and intra-cell layout are integrated as a whole, which achieves cell formation, process planning and the intra-cell layout in a single step. Secondly, an approach of a continuous optimized multi-line layout for solving the cell system layout problem is proposed, which eliminates the coupling relationship from the machine-relocation and realizes an integrated design of the two phases of the cell layout. An application based on real factory data is optimally solved by the Matlab 7.0 software to validate and verify the models.展开更多
Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining...Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.展开更多
Predictive modeling of photocatalytic NO removal is highly desirable for efficient air pollution abatement.However,great challenges remain in precisely predicting photocatalytic performance and understanding interacti...Predictive modeling of photocatalytic NO removal is highly desirable for efficient air pollution abatement.However,great challenges remain in precisely predicting photocatalytic performance and understanding interactions of diverse features in the catalytic systems.Herein,a dataset of g-C_(3) N_(4)-based catalysts with 255 data points was collected from peer-reviewed publications and machine learning(ML)model was proposed to predict the NO removal rate.The result shows that the Gradient Boosting Decision Tree(GBDT)demonstrated the greatest prediction accuracy with R 2 of 0.999 and 0.907 on the training and test data,respectively.The SHAP value and feature importance analysis revealed that the empirical categories for NO removal rate,in the order of importance,were catalyst characteristics>reaction process>preparation conditions.Moreover,the partial dependence plots broke the ML black box to further quantify the marginal contributions of the input features(e.g.,doping ratio,flow rate,and pore volume)to the model output outcomes.This ML approach presents a pure data-driven,interpretable framework,which provides new insights into the influence of catalyst characteristics,reaction process,and preparation conditions on NO removal.展开更多
Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface int...Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided.展开更多
This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data colle...This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data collected from an experimental of EDM process, whereas several research objectives have been outlined such as experimenting machining material for selected gap current, identifying machining parameters for ANN variables and selecting appropriate size of data selection. The experimental data (input variables) of copper-electrode and steel-workpiece is based on a selected gap current where pulse on time, pulse off time and sparking frequency have been chosen at optimum value of Material Removal Rate (MRR). In this paper, the result has significantly demonstrated that the ANN model is capable of predicting the MRR with low percentage prediction error when compared with the experimental result.展开更多
The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, ther...The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, there are problems such as high cutting force, poor surface integrity, and high cutting temperature during conventional machining. As an advanced processing method with high efciency and low damage, laser-assisted machining can improve the machinability of titanium alloy. In this study, a picosecond pulse laser-assisted scratching (PPLAS) method considering both the temperature-dependent material properties and ultrashort pulse laser’s characteristics is frst proposed. Then, the efects of laser power, scratching depth, and scratching speed on the distribution of stress and temperature feld are investigated by simulation. Next, PPLAS experiments are conducted to verify the correctness of the simulation and reveal the removal behavior at various combinations of laser power and scratching depths. Finally, combined with simulated and experimental results, the removal mechanism under the two machining methods is illustrated. Compared with conventional scratching (CS), the tangential grinding force is reduced by more than 60% and the material removal degree is up to 0.948 during PPLAS, while the material removal is still primarily in the form of plastic removal. Grinding debris in CS takes the form of stacked fakes with a “fsh scale” surface, whereas it takes the form of broken serrations in PPLAS. This research can provide important guidance for titanium alloy grinding with high surface quality and low surface damage.展开更多
This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes...This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper.展开更多
The goal of this research is to identify the best set of process machining parameters for wire-EDM(Electrical Discharge Machining)cutting of hardened SKD11 steel when machining a curve profile.The multi-objective func...The goal of this research is to identify the best set of process machining parameters for wire-EDM(Electrical Discharge Machining)cutting of hardened SKD11 steel when machining a curve profile.The multi-objective function includes reducing surface roughness and increasing MRR(Material Removal Rate).The optimization process is prepared by using Taguchi method coupled Grey Relational Analysis.The obtained results revealed that Toff has the greatest influence on the average grey value(48.30%),followed by the influence of WF(Wire Feed,15.99%),VM(Cutting Voltage,9.33%),SV(Server Voltage,5.05%),Ton(Pulse on Time,1.81%),while SPD(Cutting Speed)has a negligible effect(0.89%).Moreover,using the optimal set of machining parameters generates in surface roughness of 1.25399mm and MRR of 26.5562 mm^(2)/min.The verification experiment and Anderson-Darling method demonstrate the validity of the proposed model,which can be utilized for estimating surface roughness and MRR.展开更多
The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and...The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.展开更多
文摘In order to rapidly respond to the complex and mutational market, a new facility layout plan based on cellular manufacturing is proposed, which gives consideration to high efficiency and flexibility. The plan designs two phases of integrated cell layout, i.e., cell construction and cell system layout, on the condition of adding/removing machines. First, in view of the costs of logics and machine-relocation, the cell construction based on the alternative processing routes and intra-cell layout are integrated as a whole, which achieves cell formation, process planning and the intra-cell layout in a single step. Secondly, an approach of a continuous optimized multi-line layout for solving the cell system layout problem is proposed, which eliminates the coupling relationship from the machine-relocation and realizes an integrated design of the two phases of the cell layout. An application based on real factory data is optimally solved by the Matlab 7.0 software to validate and verify the models.
基金supported by the National Key Research and Development Project of China (Grant No.2023YFB3407200)the National Natural Science Foundation of China (Grant Nos.52225506,52375430,and 52188102)the Program for HUST Academic Frontier Youth Team (Grant No.2019QYTD12)。
文摘Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.
基金supported by the National Natural Science Foundation of China(Nos.22172019,22225606,22176029)Excellent Youth Foundation of Sichuan Scientific Committee Grant in China(No.2021JDJQ0006).
文摘Predictive modeling of photocatalytic NO removal is highly desirable for efficient air pollution abatement.However,great challenges remain in precisely predicting photocatalytic performance and understanding interactions of diverse features in the catalytic systems.Herein,a dataset of g-C_(3) N_(4)-based catalysts with 255 data points was collected from peer-reviewed publications and machine learning(ML)model was proposed to predict the NO removal rate.The result shows that the Gradient Boosting Decision Tree(GBDT)demonstrated the greatest prediction accuracy with R 2 of 0.999 and 0.907 on the training and test data,respectively.The SHAP value and feature importance analysis revealed that the empirical categories for NO removal rate,in the order of importance,were catalyst characteristics>reaction process>preparation conditions.Moreover,the partial dependence plots broke the ML black box to further quantify the marginal contributions of the input features(e.g.,doping ratio,flow rate,and pore volume)to the model output outcomes.This ML approach presents a pure data-driven,interpretable framework,which provides new insights into the influence of catalyst characteristics,reaction process,and preparation conditions on NO removal.
文摘Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided.
文摘This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data collected from an experimental of EDM process, whereas several research objectives have been outlined such as experimenting machining material for selected gap current, identifying machining parameters for ANN variables and selecting appropriate size of data selection. The experimental data (input variables) of copper-electrode and steel-workpiece is based on a selected gap current where pulse on time, pulse off time and sparking frequency have been chosen at optimum value of Material Removal Rate (MRR). In this paper, the result has significantly demonstrated that the ANN model is capable of predicting the MRR with low percentage prediction error when compared with the experimental result.
基金Supported by National Natural Science Foundation of China(Grant No.52175377)Chongqing Municipal Science Foundation(Grant No.CSTB2022NSCQ-LZX0080)+1 种基金Fundamental Research Funds for Central Universities(Grant Nos.2023CDJXY-026 and 2023CDJXY-021)National Science and Technology Major Project(Grant No.2017-VII-0002-0095).
文摘The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, there are problems such as high cutting force, poor surface integrity, and high cutting temperature during conventional machining. As an advanced processing method with high efciency and low damage, laser-assisted machining can improve the machinability of titanium alloy. In this study, a picosecond pulse laser-assisted scratching (PPLAS) method considering both the temperature-dependent material properties and ultrashort pulse laser’s characteristics is frst proposed. Then, the efects of laser power, scratching depth, and scratching speed on the distribution of stress and temperature feld are investigated by simulation. Next, PPLAS experiments are conducted to verify the correctness of the simulation and reveal the removal behavior at various combinations of laser power and scratching depths. Finally, combined with simulated and experimental results, the removal mechanism under the two machining methods is illustrated. Compared with conventional scratching (CS), the tangential grinding force is reduced by more than 60% and the material removal degree is up to 0.948 during PPLAS, while the material removal is still primarily in the form of plastic removal. Grinding debris in CS takes the form of stacked fakes with a “fsh scale” surface, whereas it takes the form of broken serrations in PPLAS. This research can provide important guidance for titanium alloy grinding with high surface quality and low surface damage.
文摘This work demonstrates the viability of the powder-mixed micro-electrochemical discharge machining(PMECDM) process to fabricate micro-holes on C103 niobium-based alloy for high temperature applications.Three processes are involved simultaneously i.e.spark erosion,chemical etching,and abrasive grinding for removal of material while the classical electrochemical discharge machining process involves double actions i.e.spark erosion,and chemical etching.The powder-mixed electrolyte process resulted in rapid material removal along with a better surface finish as compared to the classical microelectrochemical discharge machining(MECDM).Further,the results are optimized through a multiobjective optimization approach and study of the surface topography of the hole wall surface obtained at optimized parameters.In the selected range of experimental parameters,PMECDM shows a higher material removal rate(MRR) and lower surface roughness(R_(a))(MRR:2.8 mg/min and R_(a) of 0.61 μm) as compared to the MECDM process(MRR:2.01 mg/min and corresponding Raof 1.11 μm).A detailed analysis of the results is presented in this paper.
文摘The goal of this research is to identify the best set of process machining parameters for wire-EDM(Electrical Discharge Machining)cutting of hardened SKD11 steel when machining a curve profile.The multi-objective function includes reducing surface roughness and increasing MRR(Material Removal Rate).The optimization process is prepared by using Taguchi method coupled Grey Relational Analysis.The obtained results revealed that Toff has the greatest influence on the average grey value(48.30%),followed by the influence of WF(Wire Feed,15.99%),VM(Cutting Voltage,9.33%),SV(Server Voltage,5.05%),Ton(Pulse on Time,1.81%),while SPD(Cutting Speed)has a negligible effect(0.89%).Moreover,using the optimal set of machining parameters generates in surface roughness of 1.25399mm and MRR of 26.5562 mm^(2)/min.The verification experiment and Anderson-Darling method demonstrate the validity of the proposed model,which can be utilized for estimating surface roughness and MRR.
文摘The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.