Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model.The effect of pore air pressure on rainfall infiltration has been widely recogn...Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model.The effect of pore air pressure on rainfall infiltration has been widely recognized and validated by means of numerical simulations and laboratory experiments.However,whether a slope can actually seal pore air continues to be debated by researchers.In this study,a water-air two-phase flow model is used to simulate the rainfall infiltration process on a soil slope,and a field experiment is conducted to realistically test the sealing conditions of a slope.According to the numerical simulation,the areas of water and air flow in and out on the slope surface are relatively stable and can be classified as the“inhalation zone”and“overflow zone”,respectively.Intermittent rainfall on the soil slope has an amplifying effect on pore air pressure because rainfall intensity is usually at the millimeter level,and it causes pore air pressure to reach the cm level.A field experiment was performed to determine whether a slope can realistically seal pore air and subsequently verify the regularity of rainfall infiltration.Air pressure sensors were buried in the slope to monitor the pore air pressures during the rainfall process.The monitoring results show that the pore air pressure in the slope changed,which indicates that the slope can seal air.Moreover,the amplification effects of intermittent rainfall on pore air pressure were observed for natural rainfall,which agrees well with the numerical simulation results.展开更多
The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusio...The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusion,adsorption retention,inaccessible pore volume and effective permeability reduction.The finite volume difference and Newton iteration methods are applied to solve the model,and the effects of fracture conductivity coefficient,injected polymer mass concentration,initial polymer mass concentration and water saturation on the well-test type curves of polymer flooding fractured wells are discussed.The results show that with the increase of fracture conductivity coefficient,the pressure conduction becomes faster and the pressure drop becomes smaller,so the pressure curve of transitional flow goes downward,the duration of bilinear flow becomes shorter,and the linear flow appears earlier and lasts longer.As the injected polymer mass concentration increases,the effective water phase viscosity increases,and the pressure loss increases,so the pressure and pressure derivative curves go upward,and the bilinear flow segment becomes shorter.As the initial polymer mass concentration increases,the effective water phase viscosity increases,so the pressure curve after the wellbore storage segment moves upward as a whole.As the water saturation increases,the relative permeability of water increases,the relative permeability of oil decreases,the total oil-water two-phase mobility becomes larger,and the pressure loss is reduced,so the pressure curve after the wellbore storage segment moves downward as a whole.The reliability and practicability of this new model are verified by the comparison of the results from simplified model and commercial well test software,and the actual well test data.展开更多
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kin...A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM-Θ model is also better than the k-ε-kp-Θ model and the k-ε-kp-εp-Θ model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot.展开更多
The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influence...The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe’s Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows.展开更多
A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the b...A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time.展开更多
The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study o...The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.展开更多
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision ter...The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.展开更多
Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turb...Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent how. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.展开更多
A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed...A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux modei, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by k-ε-kp two-fluid modei, which shows a reasonable agreement. It is confirmed that the modified diffusion flux modei is suitable for simulating the multi-dimensional gas-particle two-phase flow.展开更多
In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were cond...In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were conducted using water and CO_2 as the heat transfer media in the tubes, respectively. The results indicated that hot air flux, the initial liquid level height and the tube pitch ratio had great influence on the heat transfer coefficient outside the tube bundle(ho). Finally, the air flux associated factor β and height associated factor γ were introduced to propose a new hocorrelation. After verified by experiments using cold water, high pressure CO_2 and liquid N_2 as heat transfer media, respectively, it was found that the biggest deviation between the predicted and the experimental values was less than 25%.展开更多
Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Var...Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall,gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions.In this paper by modification of a friction model available in the literature,an improved semiempirical model is proposed.The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved.Pressure gradient and velocity profiles are validated against experimental data.Using the improved model,the pressure gradient deviation from experiments diminishes by about 3%;the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.展开更多
Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- l...Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.展开更多
The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collisi...The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.展开更多
The accurate prediction of the pressure distribution of highly viscous fluids in wellbores and pipelines is of great significance for heavy oil production and transportation.The flow behavior of high-viscosity fluids ...The accurate prediction of the pressure distribution of highly viscous fluids in wellbores and pipelines is of great significance for heavy oil production and transportation.The flow behavior of high-viscosity fluids is quite different with respect to that of low-viscosity fluids.Currently,the performances of existing pressure-drop models seem to be relatively limited when they are applied to high-viscosity fluids.In this study,a gas-liquid two-phase flow experiment has been carried out using a 60 mm ID horizontal pipe with air and white oil.The experimental results indicate that viscosity exerts a significant influence on the liquid holdup and pressure drop.At the same gas and liquid volume,both the liquid holdup and pressure drop increase with an increase in the viscosity.Combining two existing models,a modified pressure drop method is developed,which is applicable to horizontal pipes for different viscosities and does not depend on the flow pattern.This new method displays a high accuracy in predicting the new experimental data presented here and other published data in literature.展开更多
The present study is focused on the unsteady two-phase flow of blood in a cylindrical region.Blood is taken as a counter-example of Brinkman type fluid containing magnetic(dust)particles.The oscillating pressure gradi...The present study is focused on the unsteady two-phase flow of blood in a cylindrical region.Blood is taken as a counter-example of Brinkman type fluid containing magnetic(dust)particles.The oscillating pressure gradient has been considered because for blood flow it is necessary to investigate in the form of a diastolic and systolic pressure.The transverse magnetic field has been applied externally to the cylindrical tube to study its impact on both fluids as well as particles.The system of derived governing equations based on Navier Stoke’s,Maxwell and heat equations has been generalized using the well-known Caputo–Fabrizio(C–F)fractional derivative.The considered fractional model has been solved analytically using the joint Laplace and Hankel(L&H)transformations.The effect of various physical parameters such as fractional parameter,Gr,M andγ on blood and magnetic particles has been shown graphically using the Mathcad software.The fluid behaviour is thinner in fractional order as compared to the classical one.展开更多
In this paper, the accuracy of estimating stained non-wetting phase saturation using digital image processing is examined, and a novel post-processing approach for calculating threshold is presented. In order to remov...In this paper, the accuracy of estimating stained non-wetting phase saturation using digital image processing is examined, and a novel post-processing approach for calculating threshold is presented. In order to remove the effect of the background noise of images and to enhance the high-frequency component of the original image, image smoothing and image sharpening methods are introduced. Depending on the correct threshold, the image binarization processing is particularly useful for estimating stained non-wetting phase saturation. Calculated saturation data are compared with the measured saturation data during the two-phase flow experiment in an artificial steel planar porous media model. The results show that the calculated saturation data agree with the measured ones. With the help of an artificial steel planar porous media model, digital image processing is an accurate and simple method for obtaining the stained non-wetting phase saturation.展开更多
The two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines are simulated by the k-ε turbulence model and the particle trajectory model. Comparison of pre...The two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines are simulated by the k-ε turbulence model and the particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows pretty good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbo-fan jet engines.展开更多
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating c...An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.展开更多
Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main co...Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Eulerian-Lagrangian approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.展开更多
Oil-water two-phase flow is ubiquitous in shale strata due to the existence of connate water and the injection of fracturing fluid.In this work,we propose a relative permeability model based on a modified Hagen-Poiseu...Oil-water two-phase flow is ubiquitous in shale strata due to the existence of connate water and the injection of fracturing fluid.In this work,we propose a relative permeability model based on a modified Hagen-Poiseuille(HP)equation and shale reconstruction algorithm.The proposed model can consider the nanoconfined effects(slip length and spatially varying viscosity),oil-water distribution,pore size distribution(PSD),total organic matter content(TOC),and micro-fracture.The results show that the increasing contact angles of organic matters(OM)and inorganic minerals(iOM)increase the relative permeability of both oil and water.As the viscosity ratio increases,the relative permeability of oil phase increases while that of water phase decreases,due to the different water-oil distribution.The effective permeability of both oil and water decreases with the increasing TOC.However,the relative permeability of water phase increases while that of oil phase decreases.The increasing number and decreasing deviation angle of micro-fracture increase the effective permeability of oil and water.However,microfracture has a minor effect on relative permeability.Our model can help understand oil-water twophase flow in shale reservoirs and provide parameter characterization for reservoir numerical simulation.展开更多
基金sponsored by The National Natural Science Foundation of China(Grant Nos.51939004 and 51279090)The National Key Research and Development Program of China(2017YFC1501100)the Hubei Key Laboratory of Construction and Management in Hydropower Engineering(2020KSD11).
文摘Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model.The effect of pore air pressure on rainfall infiltration has been widely recognized and validated by means of numerical simulations and laboratory experiments.However,whether a slope can actually seal pore air continues to be debated by researchers.In this study,a water-air two-phase flow model is used to simulate the rainfall infiltration process on a soil slope,and a field experiment is conducted to realistically test the sealing conditions of a slope.According to the numerical simulation,the areas of water and air flow in and out on the slope surface are relatively stable and can be classified as the“inhalation zone”and“overflow zone”,respectively.Intermittent rainfall on the soil slope has an amplifying effect on pore air pressure because rainfall intensity is usually at the millimeter level,and it causes pore air pressure to reach the cm level.A field experiment was performed to determine whether a slope can realistically seal pore air and subsequently verify the regularity of rainfall infiltration.Air pressure sensors were buried in the slope to monitor the pore air pressures during the rainfall process.The monitoring results show that the pore air pressure in the slope changed,which indicates that the slope can seal air.Moreover,the amplification effects of intermittent rainfall on pore air pressure were observed for natural rainfall,which agrees well with the numerical simulation results.
基金Supported by the National Natural Science Foundation of China(52104049)Science Foundation of China University of Petroleum,Beijing(2462022BJRC004)。
文摘The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusion,adsorption retention,inaccessible pore volume and effective permeability reduction.The finite volume difference and Newton iteration methods are applied to solve the model,and the effects of fracture conductivity coefficient,injected polymer mass concentration,initial polymer mass concentration and water saturation on the well-test type curves of polymer flooding fractured wells are discussed.The results show that with the increase of fracture conductivity coefficient,the pressure conduction becomes faster and the pressure drop becomes smaller,so the pressure curve of transitional flow goes downward,the duration of bilinear flow becomes shorter,and the linear flow appears earlier and lasts longer.As the injected polymer mass concentration increases,the effective water phase viscosity increases,and the pressure loss increases,so the pressure and pressure derivative curves go upward,and the bilinear flow segment becomes shorter.As the initial polymer mass concentration increases,the effective water phase viscosity increases,so the pressure curve after the wellbore storage segment moves upward as a whole.As the water saturation increases,the relative permeability of water increases,the relative permeability of oil decreases,the total oil-water two-phase mobility becomes larger,and the pressure loss is reduced,so the pressure curve after the wellbore storage segment moves downward as a whole.The reliability and practicability of this new model are verified by the comparison of the results from simplified model and commercial well test software,and the actual well test data.
基金the Special Funds for Major State Basic Research of China(G-1999-0222-08)the National Natural Science Foundation of China(50376004)Ph.D.Program Foundation,Ministry of Education of China(20030007028)
文摘A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM-Θ model is also better than the k-ε-kp-Θ model and the k-ε-kp-εp-Θ model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot.
基金Financial support from NSFC(Grant No.41572303,4151001059,41101008)Key Projects in the National Science & Technology Pillar Program(2014BAL05B01)CAS "Light of West China" Program
文摘The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe’s Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows.
基金Supported by the Special Funds for Major State Basic Research Projects, PRC(G1999-0222-08) and the National Natural Science Foundation of China(No. 19872039).
文摘A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time.
基金supported by the National Natural Science Foundation of China(11722104,11671150)supported by the National Natural Science Foundation of China(11571280,11331005)+3 种基金supported by the National Natural Science Foundation of China(11331005,11771150)by GDUPS(2016)the Fundamental Research Funds for the Central Universities of China(D2172260)FANEDD No.201315
文摘The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.
基金The project supported by the National Natural Science Foundation of China (50176022)
文摘The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.
文摘Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent how. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.
基金Special Funds for Major State Basic Research Projects of China(G1999022200)
文摘A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux modei, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by k-ε-kp two-fluid modei, which shows a reasonable agreement. It is confirmed that the modified diffusion flux modei is suitable for simulating the multi-dimensional gas-particle two-phase flow.
文摘In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were conducted using water and CO_2 as the heat transfer media in the tubes, respectively. The results indicated that hot air flux, the initial liquid level height and the tube pitch ratio had great influence on the heat transfer coefficient outside the tube bundle(ho). Finally, the air flux associated factor β and height associated factor γ were introduced to propose a new hocorrelation. After verified by experiments using cold water, high pressure CO_2 and liquid N_2 as heat transfer media, respectively, it was found that the biggest deviation between the predicted and the experimental values was less than 25%.
基金supported by the Iran National Science Foundation(Grant 96006257)。
文摘Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall,gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions.In this paper by modification of a friction model available in the literature,an improved semiempirical model is proposed.The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved.Pressure gradient and velocity profiles are validated against experimental data.Using the improved model,the pressure gradient deviation from experiments diminishes by about 3%;the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.
基金Chinese National Foundation of Natural Science-Key Projects(51339005)
文摘Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.
基金Project supported by the National Key Basic Research and Development Program of China(No.G1999-0222-08)
文摘The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.
基金National Natural Science Foundation of China(No.61572084)the National Key Research and Development Program of China(2016ZX05056004-002).
文摘The accurate prediction of the pressure distribution of highly viscous fluids in wellbores and pipelines is of great significance for heavy oil production and transportation.The flow behavior of high-viscosity fluids is quite different with respect to that of low-viscosity fluids.Currently,the performances of existing pressure-drop models seem to be relatively limited when they are applied to high-viscosity fluids.In this study,a gas-liquid two-phase flow experiment has been carried out using a 60 mm ID horizontal pipe with air and white oil.The experimental results indicate that viscosity exerts a significant influence on the liquid holdup and pressure drop.At the same gas and liquid volume,both the liquid holdup and pressure drop increase with an increase in the viscosity.Combining two existing models,a modified pressure drop method is developed,which is applicable to horizontal pipes for different viscosities and does not depend on the flow pattern.This new method displays a high accuracy in predicting the new experimental data presented here and other published data in literature.
文摘The present study is focused on the unsteady two-phase flow of blood in a cylindrical region.Blood is taken as a counter-example of Brinkman type fluid containing magnetic(dust)particles.The oscillating pressure gradient has been considered because for blood flow it is necessary to investigate in the form of a diastolic and systolic pressure.The transverse magnetic field has been applied externally to the cylindrical tube to study its impact on both fluids as well as particles.The system of derived governing equations based on Navier Stoke’s,Maxwell and heat equations has been generalized using the well-known Caputo–Fabrizio(C–F)fractional derivative.The considered fractional model has been solved analytically using the joint Laplace and Hankel(L&H)transformations.The effect of various physical parameters such as fractional parameter,Gr,M andγ on blood and magnetic particles has been shown graphically using the Mathcad software.The fluid behaviour is thinner in fractional order as compared to the classical one.
基金supported by the National Natural Science Foundation of China(Grant No51079043)the Special Fund for Public Welfare Industry of Ministry of Water Resources of China(Grants No200901064 and 201001020)the Research Innovation Program for College Graduates of Jiangsu Province(Grant No CXZZ11_0450)
文摘In this paper, the accuracy of estimating stained non-wetting phase saturation using digital image processing is examined, and a novel post-processing approach for calculating threshold is presented. In order to remove the effect of the background noise of images and to enhance the high-frequency component of the original image, image smoothing and image sharpening methods are introduced. Depending on the correct threshold, the image binarization processing is particularly useful for estimating stained non-wetting phase saturation. Calculated saturation data are compared with the measured saturation data during the two-phase flow experiment in an artificial steel planar porous media model. The results show that the calculated saturation data agree with the measured ones. With the help of an artificial steel planar porous media model, digital image processing is an accurate and simple method for obtaining the stained non-wetting phase saturation.
文摘The two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines are simulated by the k-ε turbulence model and the particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows pretty good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbo-fan jet engines.
基金the National Natural Science Foundation of China(50779069 and 90510007)the Start-up Scientific Research Foundation of China Agricultural University(2006021)the Beijing Natural Science Foundation(3071002).
文摘An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.
基金Supported by the National Natural Science Foundation of China(N.59831030).
文摘Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Eulerian-Lagrangian approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.
基金supported by the National Natural Science Foundation of China(51804328,51974348)
文摘Oil-water two-phase flow is ubiquitous in shale strata due to the existence of connate water and the injection of fracturing fluid.In this work,we propose a relative permeability model based on a modified Hagen-Poiseuille(HP)equation and shale reconstruction algorithm.The proposed model can consider the nanoconfined effects(slip length and spatially varying viscosity),oil-water distribution,pore size distribution(PSD),total organic matter content(TOC),and micro-fracture.The results show that the increasing contact angles of organic matters(OM)and inorganic minerals(iOM)increase the relative permeability of both oil and water.As the viscosity ratio increases,the relative permeability of oil phase increases while that of water phase decreases,due to the different water-oil distribution.The effective permeability of both oil and water decreases with the increasing TOC.However,the relative permeability of water phase increases while that of oil phase decreases.The increasing number and decreasing deviation angle of micro-fracture increase the effective permeability of oil and water.However,microfracture has a minor effect on relative permeability.Our model can help understand oil-water twophase flow in shale reservoirs and provide parameter characterization for reservoir numerical simulation.