Using the method of line structure light produced by a laser diode,three dimensional profile measurement is deeply researched.A hardware circuit developed is used to get the center position of light section for the im...Using the method of line structure light produced by a laser diode,three dimensional profile measurement is deeply researched.A hardware circuit developed is used to get the center position of light section for the improvement of the measurement speed.A double CCD compensation technology is used to improve the measurement precision. An easy and effective calibration method of the least squares to fit the parameter of system structure is used to get the relative coordinate relationship of objects and images of light section in the directions of height and axis. Sensor scanning segment by segment and layer by layer makes the measurement range expand greatly.展开更多
Mapping individual tree quality parameters from high-density LiDAR point clouds is an important step towards improved forest inventories.We present a novel machine learning-based workflow that uses individual tree poi...Mapping individual tree quality parameters from high-density LiDAR point clouds is an important step towards improved forest inventories.We present a novel machine learning-based workflow that uses individual tree point clouds from drone laser scanning to predict wood quality indicators in standing trees.Unlike object reconstruction methods,our approach is based on simple metrics computed on vertical slices that summarize information on point distances,angles,and geometric attributes of the space between and around the points.Our models use these slice metrics as predictors and achieve high accuracy for predicting the diameter of the largest branch per log (DLBs) and stem diameter at different heights (DS) from survey-grade drone laser scans.We show that our models are also robust and accurate when tested on suboptimal versions of the data generated by reductions in the number of points or emulations of suboptimal single-tree segmentation scenarios.Our approach provides a simple,clear,and scalable solution that can be adapted to different situations both for research and more operational mapping.展开更多
The combined use of focused ion beam(FIB)milling and field-emission scanning electron microscopy inspection(FESEM)is a unique and successful approach for assessment of near-surface phenomena at specific and selected l...The combined use of focused ion beam(FIB)milling and field-emission scanning electron microscopy inspection(FESEM)is a unique and successful approach for assessment of near-surface phenomena at specific and selected locations.In this study,a FIB/FESEM dual-beam platform was implemented to docment and analyze the wear micromechanisms on a laser-surface textured(LST)hardmetal(HM)tool.In particular,changes in surface and microstructural integrity of the laser-sculptured pyramids(effective cutting microfeatures)were characterized after testing the LST-HM tool against a steel workpiece in a workbench designed to simulate an external honing process.It was demonstrated that:(1)laser-surface texturing does not degrade the intrinsic surface integrity and tool effectiveness of HM pyramids;and(2)there exists a correlation between the wear and loading of shaped pyramids at the local level.Hence,the enhanced performance of the laser-textured tool should consider the pyramid geometry aspects rather than the microstructure assemblage of the HM grade used,at least for attempted abrasive applications.展开更多
文摘Using the method of line structure light produced by a laser diode,three dimensional profile measurement is deeply researched.A hardware circuit developed is used to get the center position of light section for the improvement of the measurement speed.A double CCD compensation technology is used to improve the measurement precision. An easy and effective calibration method of the least squares to fit the parameter of system structure is used to get the relative coordinate relationship of objects and images of light section in the directions of height and axis. Sensor scanning segment by segment and layer by layer makes the measurement range expand greatly.
基金the Center for Research-based Innovation SmartForest:Bringing Industry 4.0 to the Norwegian forest sector (NFR SFI project no.309671,smartforest.no)。
文摘Mapping individual tree quality parameters from high-density LiDAR point clouds is an important step towards improved forest inventories.We present a novel machine learning-based workflow that uses individual tree point clouds from drone laser scanning to predict wood quality indicators in standing trees.Unlike object reconstruction methods,our approach is based on simple metrics computed on vertical slices that summarize information on point distances,angles,and geometric attributes of the space between and around the points.Our models use these slice metrics as predictors and achieve high accuracy for predicting the diameter of the largest branch per log (DLBs) and stem diameter at different heights (DS) from survey-grade drone laser scans.We show that our models are also robust and accurate when tested on suboptimal versions of the data generated by reductions in the number of points or emulations of suboptimal single-tree segmentation scenarios.Our approach provides a simple,clear,and scalable solution that can be adapted to different situations both for research and more operational mapping.
基金supported by the German Research Foundation(DFG)within the Individual Research Grant(425923019)“Laser Surface Textured Cemented Carbides for Application in Abrasive Machining Processes”.
文摘The combined use of focused ion beam(FIB)milling and field-emission scanning electron microscopy inspection(FESEM)is a unique and successful approach for assessment of near-surface phenomena at specific and selected locations.In this study,a FIB/FESEM dual-beam platform was implemented to docment and analyze the wear micromechanisms on a laser-surface textured(LST)hardmetal(HM)tool.In particular,changes in surface and microstructural integrity of the laser-sculptured pyramids(effective cutting microfeatures)were characterized after testing the LST-HM tool against a steel workpiece in a workbench designed to simulate an external honing process.It was demonstrated that:(1)laser-surface texturing does not degrade the intrinsic surface integrity and tool effectiveness of HM pyramids;and(2)there exists a correlation between the wear and loading of shaped pyramids at the local level.Hence,the enhanced performance of the laser-textured tool should consider the pyramid geometry aspects rather than the microstructure assemblage of the HM grade used,at least for attempted abrasive applications.