Integrating liquid CO_(2)phase transition blasting(LCPTB)technology with hydraulic fracturing(HF)methods can help reduce wellbore damage,create multiple radial fractures,and establish a complex fracture network.This a...Integrating liquid CO_(2)phase transition blasting(LCPTB)technology with hydraulic fracturing(HF)methods can help reduce wellbore damage,create multiple radial fractures,and establish a complex fracture network.This approach significantly increases the recovery efficiency of low-permeability oil and gas fields.Accurately calculating the number of fractures caused by LCPTB is necessary to predict production enhancement effects and optimize subsequent HF designs.However,few studies are reported on large-scale physical model experiments in terms of a method for calculating the fracture number.This study analyzed the initiation and propagation of cracks under LCPTB,derived a calculation formula for crack propagation radius under stress waves,and then proposed a new,fast,and accurate method for calculating the fracture number using the principle of mass conservation.Through ten rock-breaking tests using LCPTB,the study confirmed the effectiveness of the proposed calculation approach and elucidated the variation rule of explosion pressure,rock-breaking scenario,and the impact of varying parameters on fracture number.The results show that the new calculation method is suitable for fracturing technologies with high pressure rates.Recommendations include enlarging the diameter of the fracturing tube and increasing the liquid CO2 mass in the tube to enhance fracture effectiveness.Moreover,the method can be applied to other fracturing technologies,such as explosive fracturing(EF)within HF formations,indicating its broader applicability and potential impact on optimizing unconventional resource extraction technologies.展开更多
Producing complex fracture networks in a safe way plays a critical role in the hot dry rock (HDR) geothermal energy exploitation. However, conventional hydraulic fracturing (HF) generally produces high breakdown press...Producing complex fracture networks in a safe way plays a critical role in the hot dry rock (HDR) geothermal energy exploitation. However, conventional hydraulic fracturing (HF) generally produces high breakdown pressure and results only in single main fracture morphology. Furthermore, HF has also other problems such as the increased risk of seismic events and consuption of large amount of water. In this work, a new stimulation method based on cyclic soft stimulation (CSS) and liquid nitrogen (LN2) fracturing, known as cyclic LN2 fracturing is explored, which we believe has the potential to solve the above issues related to HF. The fracturing performances including breakdown pressure and fracture morphology on granites under true-triaxial stresses are investigated and compared with cyclic water fracturing. Cryo-scanning electron microscopy (Cryo-SEM) tests and X-ray computed tomography (CT) scanning tests were used for quantitative characterization of fracture parameters and to evaluate the cyclic LN2 fracturing performances. The results demonstrate that the cyclic LN2 fracturing results in reduced breakdown pressure, with between 21% and 67% lower pressure compared with using cyclic water fracturing. Cyclic LN2 fracturing tends to produce more complex and branched fractures, whereas cyclic water fracturing usually produces a single main fracture under a low number of cycles and pressure levels. Thermally-induced fractures mostly occur around the interfaces of different particles. This study shows the potential benefits of cyclic LN2 fracturing on HDR. It is expected to provide theoretical guidance for the cyclic LN2 fracturing application in HDR reservoirs.展开更多
The fracturing process of sandstone is inherently complex due to its loose internal structure and deformation adaptability.Liquid nitrogen pre-injection has emerged as a promising approach to damage reservoir rocks,ef...The fracturing process of sandstone is inherently complex due to its loose internal structure and deformation adaptability.Liquid nitrogen pre-injection has emerged as a promising approach to damage reservoir rocks,effectively reducing fracture pressure and establishing intricate fracture networks,thus offering a potential solution for reservoir reconstruction.To unravel the fundamental mechanisms governing sandstone fracturing behaviors following liquid nitrogen pre-injection,sandstone fracturing experiments were conducted under varying durations of liquid nitrogen injection,rock temperature,and in-situ stress conditions.The experiments showcased the evolution of injection pressure and fracture characteristics under different testing conditions,complemented by electron microscope analysis to elucidate the factors driving the complex fracture characteristics of sandstone.The findings revealed a significant decrease in fracture pressure after liquid nitrogen pre-injection,accompanied by a notable increase in the complexity of the fracture network and the roughness of the fracture surface.Moreover,prolonging the duration of liquid nitrogen injection and elevating reservoir temperature further contributed to reducing fracture pressure,consequently enhancing fracture complexity and surface roughness.Conversely,the application of confining pressure amplified fracture pressure while intensifying the degree of fracturing.Notably,the investigation highlighted the increased presence of microcracks in sandstone resulting from liquid nitrogen preinjection,facilitating fluid diffusion during fracturing and yielding lower fracture pressures,thereby enhancing the effectiveness of sandstone reservoir reformation.The research results can provide theoretical guidance for geothermal reservoir reconstruction.展开更多
Cryogenic fracturing with liquid nitrogen(LN_(2))offers the benefits of reducing the water consumption and adverse environmental impacts induced by water-based fracturing,as well as potentially enhancing the fracture ...Cryogenic fracturing with liquid nitrogen(LN_(2))offers the benefits of reducing the water consumption and adverse environmental impacts induced by water-based fracturing,as well as potentially enhancing the fracture complexity.We performed a series of laboratory experiments to explore the key mechanisms governing the breakdown pressures of shale during cryogenic fracturing.In this study,cylindrical shale samples were pre-conditioned by exposing a borehole to low-temperature LN_(2) for a certain time period,and then,the samples were fractured using gaseous N_(2) under triaxial stress and a high reservoir temperature.The effects of various key parameters on the breakdown pressure were investigated,including the duration of the low-temperature LN_(2) treatment,the confining pressure,the reservoir temperature,and the direction of the shale bedding relative to the borehole axis.The results demonstrate that the injection of low-temperature LN_(2) as a pre-fracturing fluid into a borehole can significantly reduce the breakdown pressure of the shale during subsequent nitrogen fracturing.This reduction in breakdown pressure can be further intensified by increasing the duration of the LN_(2) pre-conditioning.Without LN_(2) pre-conditioning,the breakdown pressure initially increases and then decreases with increasing reservoir temperature.When LN_(2) pre-conditioning is applied,the breakdown pressure keeps decreasing with increasing reservoir temperature.As the confining pressure increased,the breakdown pressure increased linearly in the tests with and without LN_(2) pre-conditioning.The experimental results demonstrate that LN_(2) preconditioning before N_(2) fracturing is a promising waterless fracturing technique that reduces the breakdown pressure and enhances the fracture complexity.展开更多
Liquid nitrogen has shown excellent performances as a good fracturing medium in the extraction of unconventional natural gas,and its application in coalbed methane extraction is currently a research hotspot.This study...Liquid nitrogen has shown excellent performances as a good fracturing medium in the extraction of unconventional natural gas,and its application in coalbed methane extraction is currently a research hotspot.This study focuses on the acoustic emission properties of coal specimens treated utilizing liquid nitrogen with varying initial temperatures in a three-point bending environment.Through examination of the load-displacement curves of the considered coal samples,their mechanical properties are also revealed for different initial temperatures and cycling frequencies.The findings demonstrate a gradual decline in the maximum load capacity of coal rock as the temperature rises.Similarly,when subjected to the same temperature,an escalation in the cycling frequency leads to a reduction in the peak load of coal rock.This suggests that both temperature and cycling frequency exert a notable impact on the fracturing efficacy of liquid nitrogen.Freeze-thaw cycling treatments and exposure to high-temperature conditions can activate preexisting damage in the coal rock,and,accordingly,influence its mechanical properties.In particular,throughout the progressive loading of coal rock samples,the failure mechanisms are predominantly characterized by the occurrence of tensile cracks,succeeded by the development,spread,and fracture of shear fissures.展开更多
Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the ...Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).展开更多
Thermal shocking effect occurs when the coalbed methane(CBM)reservoirs meet liquid nitrogen(LN2)of extremely low temperature.In this study,3D via X-ray microcomputer tomography(μCT)and scanning electron microscope(SE...Thermal shocking effect occurs when the coalbed methane(CBM)reservoirs meet liquid nitrogen(LN2)of extremely low temperature.In this study,3D via X-ray microcomputer tomography(μCT)and scanning electron microscope(SEM)are employed to visualize and quantify morphological evolution characteristics of fractures in coal after LN2 thermal shocking treatments.LN2 thermal shocking leads to a denser fracture network than its original state with coal porosity growth rate increasing up to 183.3%.The surface porosity of theμCT scanned layers inside the coal specimen is influenced by LN2 thermal shocking which rises from 18.76%to 215.11%,illustrating the deformation heterogeneity of coal after LN2 thermal shocking.The cracking effect of LN2 thermal shocking on the surface of low porosity is generally more effective than that of high surface porosity,indicating the applicability of LN2 thermal shocking on low-permeability CBM reservoir stimulation.The characteristics of SEM scanned coal matrix in the coal powder and the coal block after the LN2 thermal shocking presented a large amount of deep and shallow progressive scratch layers,fracture variation diversity(i.e.extension,propagation,connectivity,irregularity)on the surface of the coal block and these were the main reasons leading to the decrease of the uniaxial compressive strength of the coal specimen.展开更多
Carbonate outcrops were taken from Ma 51 sub-member in the Lower Paleozoic in the Yan’an gas field to conduct true tri-axial hydraulic fracturing experiments with water, liquid CO_(2) and supercritical CO_(2). CT sca...Carbonate outcrops were taken from Ma 51 sub-member in the Lower Paleozoic in the Yan’an gas field to conduct true tri-axial hydraulic fracturing experiments with water, liquid CO_(2) and supercritical CO_(2). CT scan was applied to analyze initiation and propagation laws of hydraulic fractures in carbonate rocks. The experiments show that supercritical CO_(2) has low viscosity, strong diffusivity and large filtration during fracturing, which is more liable to increase pore pressure of rocks around wellbore and decrease breakdown pressure of carbonate rocks. However, it would cost much more volume of supercritical CO_(2) than water to fracture rocks since the former increases the wellbore pressure more slowly during fracturing. For carbonate rocks with few natural fractures, tensional fractures are generated by fracturing with water and liquid CO_(2), and these fractures propagate along the maximum horizontal principal stress direction;while fracturing with supercritical CO_(2) can form shear fractures, whose morphology is rarely influenced by horizontal stress difference. Besides, the angle between propagation direction of these shear fractures near the wellbore and the maximum horizontal principal stress is 45°, and the fractures would gradually turn to propagate along the maximum horizontal principal stress when they extend to a certain distance from the wellbore, leading to an increase of fracture tortuosity compared with the former. For carbonate rocks with well-developed natural fractures, fracturing with fresh water is conducive to connect natural fractures with low approaching angle and form stepped fractures with simple morphology. The key to forming complex fractures after fracturing carbonate rocks is to connect the natural fractures with high approaching angle. It is easier for liquid CO_(2) with low viscosity to realize such connection. Multi-directional fractures with relatively complex morphology would be formed after fracturing with liquid CO_(2).展开更多
Objective By hybridization in situ and biomech anical approach of platelet-derive d growth fator mRNA(PDGFmRNA)and in-sulin-like growth factor mRNA(IGFmRNA),we discussed the influence of the platelet concentrated liqu...Objective By hybridization in situ and biomech anical approach of platelet-derive d growth fator mRNA(PDGFmRNA)and in-sulin-like growth factor mRNA(IGFmRNA),we discussed the influence of the platelet concentrated liquid on the healing of rabbit ulna frac-ture.Method We selected 24New Zealand rabbits,divided them into 4groups randomly(blank group,serum-control group,g roup with platelet concentrated liquid and group with b one graft and platelet concentrated liquid),and then made the fracture model on t he middle of ulna which was fixed by finger armor plate.Before t he operation,we drew out 6ml blood fr om femoral artery,performed anti-c oagulation with the Sodium Citrate and centrifugated by low and the followed high speed.We purified the white blood plate and injected it into the fracture position.The rabbits were killed at 1st,2nd,4th and 6th week.Q ualitative analysis by hybridizati on in situ of PDGFmRNAand IGFmRNAand biomechanical measurement on the 6th week sample were made.Result Bone callus could be seen on the radiu s specimen in various degrees when th e rabbits were killed at 1st,2nd,4th and 6th week,particularly i n the last week.The average maximum d estructive load on the fracture tip i s higher to the control,and there is significant difference(P <0.01).Conclusion The local application of platelet co ncentration on the fracture tip can a ccelerate its healing.展开更多
基金supported by the National Key R&D Program of China (Grant No.2020YFA0711802).
文摘Integrating liquid CO_(2)phase transition blasting(LCPTB)technology with hydraulic fracturing(HF)methods can help reduce wellbore damage,create multiple radial fractures,and establish a complex fracture network.This approach significantly increases the recovery efficiency of low-permeability oil and gas fields.Accurately calculating the number of fractures caused by LCPTB is necessary to predict production enhancement effects and optimize subsequent HF designs.However,few studies are reported on large-scale physical model experiments in terms of a method for calculating the fracture number.This study analyzed the initiation and propagation of cracks under LCPTB,derived a calculation formula for crack propagation radius under stress waves,and then proposed a new,fast,and accurate method for calculating the fracture number using the principle of mass conservation.Through ten rock-breaking tests using LCPTB,the study confirmed the effectiveness of the proposed calculation approach and elucidated the variation rule of explosion pressure,rock-breaking scenario,and the impact of varying parameters on fracture number.The results show that the new calculation method is suitable for fracturing technologies with high pressure rates.Recommendations include enlarging the diameter of the fracturing tube and increasing the liquid CO2 mass in the tube to enhance fracture effectiveness.Moreover,the method can be applied to other fracturing technologies,such as explosive fracturing(EF)within HF formations,indicating its broader applicability and potential impact on optimizing unconventional resource extraction technologies.
基金supported by the Youth Program of the National Natural Science Foundation of China(52004299)Major Project of the National Natural Science Foundation of China(52192621)+2 种基金the National Science Foundation for National R&D Program for Major Research Instruments of China(51827804)Beijing Outstanding Young Scientist Program(BJJWZYJH01201911414038)the National Science Foundation for Distinguished Young Scholars of China(51725404).
文摘Producing complex fracture networks in a safe way plays a critical role in the hot dry rock (HDR) geothermal energy exploitation. However, conventional hydraulic fracturing (HF) generally produces high breakdown pressure and results only in single main fracture morphology. Furthermore, HF has also other problems such as the increased risk of seismic events and consuption of large amount of water. In this work, a new stimulation method based on cyclic soft stimulation (CSS) and liquid nitrogen (LN2) fracturing, known as cyclic LN2 fracturing is explored, which we believe has the potential to solve the above issues related to HF. The fracturing performances including breakdown pressure and fracture morphology on granites under true-triaxial stresses are investigated and compared with cyclic water fracturing. Cryo-scanning electron microscopy (Cryo-SEM) tests and X-ray computed tomography (CT) scanning tests were used for quantitative characterization of fracture parameters and to evaluate the cyclic LN2 fracturing performances. The results demonstrate that the cyclic LN2 fracturing results in reduced breakdown pressure, with between 21% and 67% lower pressure compared with using cyclic water fracturing. Cyclic LN2 fracturing tends to produce more complex and branched fractures, whereas cyclic water fracturing usually produces a single main fracture under a low number of cycles and pressure levels. Thermally-induced fractures mostly occur around the interfaces of different particles. This study shows the potential benefits of cyclic LN2 fracturing on HDR. It is expected to provide theoretical guidance for the cyclic LN2 fracturing application in HDR reservoirs.
基金supported by the National Key R&D Program of China(2022YFE0128300).
文摘The fracturing process of sandstone is inherently complex due to its loose internal structure and deformation adaptability.Liquid nitrogen pre-injection has emerged as a promising approach to damage reservoir rocks,effectively reducing fracture pressure and establishing intricate fracture networks,thus offering a potential solution for reservoir reconstruction.To unravel the fundamental mechanisms governing sandstone fracturing behaviors following liquid nitrogen pre-injection,sandstone fracturing experiments were conducted under varying durations of liquid nitrogen injection,rock temperature,and in-situ stress conditions.The experiments showcased the evolution of injection pressure and fracture characteristics under different testing conditions,complemented by electron microscope analysis to elucidate the factors driving the complex fracture characteristics of sandstone.The findings revealed a significant decrease in fracture pressure after liquid nitrogen pre-injection,accompanied by a notable increase in the complexity of the fracture network and the roughness of the fracture surface.Moreover,prolonging the duration of liquid nitrogen injection and elevating reservoir temperature further contributed to reducing fracture pressure,consequently enhancing fracture complexity and surface roughness.Conversely,the application of confining pressure amplified fracture pressure while intensifying the degree of fracturing.Notably,the investigation highlighted the increased presence of microcracks in sandstone resulting from liquid nitrogen preinjection,facilitating fluid diffusion during fracturing and yielding lower fracture pressures,thereby enhancing the effectiveness of sandstone reservoir reformation.The research results can provide theoretical guidance for geothermal reservoir reconstruction.
基金This work was supported by the National Natural Science Foundation of China(No.51674247)the project for Fundamental Research Funds for the Central Universities(China University of Mining and Technology)under No.2015XKZD06.
文摘Cryogenic fracturing with liquid nitrogen(LN_(2))offers the benefits of reducing the water consumption and adverse environmental impacts induced by water-based fracturing,as well as potentially enhancing the fracture complexity.We performed a series of laboratory experiments to explore the key mechanisms governing the breakdown pressures of shale during cryogenic fracturing.In this study,cylindrical shale samples were pre-conditioned by exposing a borehole to low-temperature LN_(2) for a certain time period,and then,the samples were fractured using gaseous N_(2) under triaxial stress and a high reservoir temperature.The effects of various key parameters on the breakdown pressure were investigated,including the duration of the low-temperature LN_(2) treatment,the confining pressure,the reservoir temperature,and the direction of the shale bedding relative to the borehole axis.The results demonstrate that the injection of low-temperature LN_(2) as a pre-fracturing fluid into a borehole can significantly reduce the breakdown pressure of the shale during subsequent nitrogen fracturing.This reduction in breakdown pressure can be further intensified by increasing the duration of the LN_(2) pre-conditioning.Without LN_(2) pre-conditioning,the breakdown pressure initially increases and then decreases with increasing reservoir temperature.When LN_(2) pre-conditioning is applied,the breakdown pressure keeps decreasing with increasing reservoir temperature.As the confining pressure increased,the breakdown pressure increased linearly in the tests with and without LN_(2) pre-conditioning.The experimental results demonstrate that LN_(2) preconditioning before N_(2) fracturing is a promising waterless fracturing technique that reduces the breakdown pressure and enhances the fracture complexity.
基金the National Natural Science Foundation(52004285)Fundamental Research Funds for the Central Universities from China University of Mining and Technology-Beijing(JCCXXNY06)the Open Fund of State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University)(WS2021A03).
文摘Liquid nitrogen has shown excellent performances as a good fracturing medium in the extraction of unconventional natural gas,and its application in coalbed methane extraction is currently a research hotspot.This study focuses on the acoustic emission properties of coal specimens treated utilizing liquid nitrogen with varying initial temperatures in a three-point bending environment.Through examination of the load-displacement curves of the considered coal samples,their mechanical properties are also revealed for different initial temperatures and cycling frequencies.The findings demonstrate a gradual decline in the maximum load capacity of coal rock as the temperature rises.Similarly,when subjected to the same temperature,an escalation in the cycling frequency leads to a reduction in the peak load of coal rock.This suggests that both temperature and cycling frequency exert a notable impact on the fracturing efficacy of liquid nitrogen.Freeze-thaw cycling treatments and exposure to high-temperature conditions can activate preexisting damage in the coal rock,and,accordingly,influence its mechanical properties.In particular,throughout the progressive loading of coal rock samples,the failure mechanisms are predominantly characterized by the occurrence of tensile cracks,succeeded by the development,spread,and fracture of shear fissures.
文摘Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).
基金Project(2017XKQY012)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Thermal shocking effect occurs when the coalbed methane(CBM)reservoirs meet liquid nitrogen(LN2)of extremely low temperature.In this study,3D via X-ray microcomputer tomography(μCT)and scanning electron microscope(SEM)are employed to visualize and quantify morphological evolution characteristics of fractures in coal after LN2 thermal shocking treatments.LN2 thermal shocking leads to a denser fracture network than its original state with coal porosity growth rate increasing up to 183.3%.The surface porosity of theμCT scanned layers inside the coal specimen is influenced by LN2 thermal shocking which rises from 18.76%to 215.11%,illustrating the deformation heterogeneity of coal after LN2 thermal shocking.The cracking effect of LN2 thermal shocking on the surface of low porosity is generally more effective than that of high surface porosity,indicating the applicability of LN2 thermal shocking on low-permeability CBM reservoir stimulation.The characteristics of SEM scanned coal matrix in the coal powder and the coal block after the LN2 thermal shocking presented a large amount of deep and shallow progressive scratch layers,fracture variation diversity(i.e.extension,propagation,connectivity,irregularity)on the surface of the coal block and these were the main reasons leading to the decrease of the uniaxial compressive strength of the coal specimen.
基金Supported by National Natural Science Foundation of China Project(51704249)The Open Fund Project of the State Key Laboratory Oil and Gas Reservoir Geology and Exploitation(PLN2020-1)。
文摘Carbonate outcrops were taken from Ma 51 sub-member in the Lower Paleozoic in the Yan’an gas field to conduct true tri-axial hydraulic fracturing experiments with water, liquid CO_(2) and supercritical CO_(2). CT scan was applied to analyze initiation and propagation laws of hydraulic fractures in carbonate rocks. The experiments show that supercritical CO_(2) has low viscosity, strong diffusivity and large filtration during fracturing, which is more liable to increase pore pressure of rocks around wellbore and decrease breakdown pressure of carbonate rocks. However, it would cost much more volume of supercritical CO_(2) than water to fracture rocks since the former increases the wellbore pressure more slowly during fracturing. For carbonate rocks with few natural fractures, tensional fractures are generated by fracturing with water and liquid CO_(2), and these fractures propagate along the maximum horizontal principal stress direction;while fracturing with supercritical CO_(2) can form shear fractures, whose morphology is rarely influenced by horizontal stress difference. Besides, the angle between propagation direction of these shear fractures near the wellbore and the maximum horizontal principal stress is 45°, and the fractures would gradually turn to propagate along the maximum horizontal principal stress when they extend to a certain distance from the wellbore, leading to an increase of fracture tortuosity compared with the former. For carbonate rocks with well-developed natural fractures, fracturing with fresh water is conducive to connect natural fractures with low approaching angle and form stepped fractures with simple morphology. The key to forming complex fractures after fracturing carbonate rocks is to connect the natural fractures with high approaching angle. It is easier for liquid CO_(2) with low viscosity to realize such connection. Multi-directional fractures with relatively complex morphology would be formed after fracturing with liquid CO_(2).
文摘Objective By hybridization in situ and biomech anical approach of platelet-derive d growth fator mRNA(PDGFmRNA)and in-sulin-like growth factor mRNA(IGFmRNA),we discussed the influence of the platelet concentrated liquid on the healing of rabbit ulna frac-ture.Method We selected 24New Zealand rabbits,divided them into 4groups randomly(blank group,serum-control group,g roup with platelet concentrated liquid and group with b one graft and platelet concentrated liquid),and then made the fracture model on t he middle of ulna which was fixed by finger armor plate.Before t he operation,we drew out 6ml blood fr om femoral artery,performed anti-c oagulation with the Sodium Citrate and centrifugated by low and the followed high speed.We purified the white blood plate and injected it into the fracture position.The rabbits were killed at 1st,2nd,4th and 6th week.Q ualitative analysis by hybridizati on in situ of PDGFmRNAand IGFmRNAand biomechanical measurement on the 6th week sample were made.Result Bone callus could be seen on the radiu s specimen in various degrees when th e rabbits were killed at 1st,2nd,4th and 6th week,particularly i n the last week.The average maximum d estructive load on the fracture tip i s higher to the control,and there is significant difference(P <0.01).Conclusion The local application of platelet co ncentration on the fracture tip can a ccelerate its healing.