Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th...Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.展开更多
The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and ...The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.展开更多
A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in...A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in waterborne media.TEM,FTIR,XPS,and EDX determination showed that PAA and SiO2 were coated on the surface of aluminum.Evolved hydrogen detection showed that the corrosion resistance of composite particle had been markedly improved.Maximum corrosion inhibition efficiency of SiO2 coated aluminum(SiO2@Al)was 95.1% while that of double-layer coated aluminum(PAA/SiO2@Al)was 98.8%.Meanwhile,polyacrylic acid layer improved the agglomeration of aluminum significantly.According to the dispersibility test,the particle size of 50% volume fraction [d(0.5)] of aluminum,SiO2@Aland PAA/SiO2@Alwere 42,53,and 34 μm,respectively.展开更多
Despite the great potential of cellulose wood pulp and cellulose nanofibrils as reinforcing filler in thermoplastics,its use is limited due to its tendency to form agglomerates and due to its high hydrophilic characte...Despite the great potential of cellulose wood pulp and cellulose nanofibrils as reinforcing filler in thermoplastics,its use is limited due to its tendency to form agglomerates and due to its high hydrophilic character.Here we describe fiberboard composites with high contents of wood pulp or cellulose nanofibrils,and a resin of poly(styrene-methyl-methacrylate-acrylic acid)used as water-based emulsion.Cellulose wood pulp and cellulose nanofibrils were used directly in the form of water suspensions.The method is based on the flocculation of the polymer emulsion followed by agglomeration of a mixture of the polymer emulsion and cellulose suspension,leading to the co-precipitation of the composite material,which can be easily separated from the water phase.Composites with acrylic polymer/cellulose fibers in the proportions of 75:25,50:50 and 25:75 wt%were prepared.Composites were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),thermogravimetric analysis(TGA),dynamic mechanical analysis(DMA)and water absorption tests.SEM analysis revealed a very good dispersion of the fibers without evidence of agglomeration,which led to superior mechanical properties.These results showed the effectiveness of the methodology and the potential of cellulose wood pulp and CNF as reinforcement fillers in fiberboard composites and any other high fiber-content materials.展开更多
Reactive acrylate microgels with different reactive groups such as carboxyl, hydroxide groups had excellent properties such as quick-dry, low viscosity, high adhesion and hardness, which made them extensively used in ...Reactive acrylate microgels with different reactive groups such as carboxyl, hydroxide groups had excellent properties such as quick-dry, low viscosity, high adhesion and hardness, which made them extensively used in preparing paints or in coating-modification. Reactive acrylate microgels were prepared by emulsion co-polymerization with zwitterions surfactant, anionic surfactant and nonionic surfactant as co-emulsifier. The water-base baking paints made from reactive acrylate microgels and melamine-formaldehyde resin had excellent combination properties. The aluminium powder can be well-dispersed in the paints. The influences of monomer components on the properties of the water-base baking paints were discussed in this paper. And the baking paints were also compared with the marketing solvent acrylate baking paints. It was found that the water-base acrylate amino baking paints had better combination properties than the organic solvent acrylate baking paints, which means that the water-base baking paints had a bright marketing future.展开更多
By means of initiation of the high temperature and shearing stress of an extruder,we synthesized the graft copolymer of starch with acrylate monomers based on the simple dry method.The eff...By means of initiation of the high temperature and shearing stress of an extruder,we synthesized the graft copolymer of starch with acrylate monomers based on the simple dry method.The effects of reaction conditions on graft copolymerization were discussed. Grafted starch used as a compatibilizer for the blend system of starch and polyethylene was further investigated. The results indicate that grafted starch as a compatibilizer can improve the mechanical properties and rheologic properties of the blend of starch and polyethylene.展开更多
Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolyme...Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolymerization. The variables affecting the degree of grafting, such as the time of UV (Ultraviolet-visible) irradiation and the concentrations of the methyl acrylate and photoinitiator, were investigated. The graft copolymer membranes were prepared by the phase inversion method. The chemical and morphological changes were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), scanning electron microscopy, and water contact angles measurements. Results revealed that methyl acrylate groups were present on the membranes and the graft degree of methyl acrylate had remarkable effect on the performance of membranes. Pure water contact angle on the membrane surface decreases with the increase of methyl acrylate graft degree, which indicated that the hydrophilicity of graft copolymer membranes was improved. The permeation fluxes of pure water and bovine serum albumin solution were measured to evaluate the antifouling property of graft copolymer membranes, the results of which have shown an enhancement of antifouling property for graft copolymer membranes.展开更多
Unsaturated polyester resin (UPR)/acrylate-terminated polyurethane (ATPU)/organo-modified montmorillonite (OMMT) nanocomposites were prepared by the in situ intercalative polymerization method. Samples were prep...Unsaturated polyester resin (UPR)/acrylate-terminated polyurethane (ATPU)/organo-modified montmorillonite (OMMT) nanocomposites were prepared by the in situ intercalative polymerization method. Samples were prepared by the sequential mixing, i.e. mixture of the ATPU and styrene (S) and OMMT were prepared in the first step; UPR was then added to the pre-intercalates of ATPU/S/OMMT. Results indicate that the mechanical properties and thermal properties of UPR/ATPU/OMMT nanocomposites greatly depend on the amount of ATPU and OMMT. Results show that the addition of ATPU could increase the impact strength of UPR/ATPU composites, but the tensile strength, flexural strength and heat resistance of the materials are obviously decreased. When the weight ratio between UPR, ATPU and OMMT were 82:15:3, the impact strength and heat distortion-temperature of nanocomposite were greatly improved, meanwhile there was little change for other properties of the nanocomposites. The synergistic enhancement effects of ATPU and OMMT on the composites were observed. The structures and morphology of the composites were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy.展开更多
In order to prepare hydrophobic waterborne polyurethane coatings with better performances, the silicon-containing waterborne polyurethane(SiWPU) with functional chain extender hydroxyethyl acrylate(HEA) was prepar...In order to prepare hydrophobic waterborne polyurethane coatings with better performances, the silicon-containing waterborne polyurethane(SiWPU) with functional chain extender hydroxyethyl acrylate(HEA) was prepared first, and then a series of silicon&fluorine-containing polyurethane/acrylate(FSiPUA) emulsions were obtained with flourine containing acrylic monomer by seed emulsion polymerization, introducing micro-nano SiO2 into FSiPUA emulsion to make the final hybrid emulsion. The properties of Si WPU, FSiPUA and SiO2/FSiPUA were investigated by fourier transform infrared spectra(FTIR), transmission electron microscope(TEM), Scanning Electron Microscope(SEM) and some other analytical methods. The results revealed that FSiPUA emulsion particles possessed composite core-shell structure and FSiPUA films with suitable ratio performed better than Si WPU films in hardness, water resistance and solvent resistance. The SiO2/FSiPUA films with micro-nano dual roughness structure showed a water contact angle of 136° with good resistance to acid and alkali.展开更多
Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprol...Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.展开更多
The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylaterubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin ...The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylaterubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin to acrylate rubberand its incompatible blend can cause a remarkable improvement in the temperature dependence of the loss tangent. As a result, the present blends are very good damping materials.展开更多
A novel ohthalazinone modified epoxy acrylate resin for the high temperature resistant ultravioet (UV) curable coating.was syn-thesized.The methacrylated epoxy resins obtained were utilized to UV radiation curing by...A novel ohthalazinone modified epoxy acrylate resin for the high temperature resistant ultravioet (UV) curable coating.was syn-thesized.The methacrylated epoxy resins obtained were utilized to UV radiation curing by taking 2.5% (wt%) of photoinitiator in combination with 20% (wt%) of diluent, and generated the interpenetraring polymer networks. The cured film had good thermal and chemical stability.展开更多
A novel UV-curable prepolymer polypropyleneglycol diglycidyl ether diacrylate (PPGGEA) was synthesized by utilizing polypropyleneglycol diglycidyl ether (PPGGE) and acrylic acid (AA) as starting materials, N, N-...A novel UV-curable prepolymer polypropyleneglycol diglycidyl ether diacrylate (PPGGEA) was synthesized by utilizing polypropyleneglycol diglycidyl ether (PPGGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthetic conditions were in the following: the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ~C, and the molar ratio of PPGGE to AA was 1:2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-cured initiator was added to the synthesized PPGGEA to prepare a kind of UV-cured coating. The mechanical properties of the UV-cured films were determined, giving 29.99 MPa of tensile strength, 834.27 MPa of the Young's modulus and 5.66% of elongation at tear.展开更多
The production of acrylates from biomass-originated lactic acid is of extraordinary importance, to overcome the increasing worldwide shortage of petroleum. In this study, the catalytic dehydration of methyl lactate ov...The production of acrylates from biomass-originated lactic acid is of extraordinary importance, to overcome the increasing worldwide shortage of petroleum. In this study, the catalytic dehydration of methyl lactate over a calcium sulfate catalyst, with various promoters, has been carried out to identify potential catalyst/promoter combinations for acrylate production. The best catalyst for methyl acrylate formation in this study has been calcium sulfate, with cupric sulfate and phosphates as promoters. The optimal mass ratio of m(CaSOa) : m(CuSOa) : m(Na2HPO4) : m(KH2PO4) is 150.0 : 13.8 : 2.5 : 1.2. Effects of carrier gas, reaction temperature, feed concentration as well as contact time on the dehydration of methyl lactate have been investigated. With nitrogen as a carrier gas, a combined yield of acrylic acid and methyl acrylate is 63.9% from 60% (by mass) methyl lactate at 400℃ with 7.7 seconds contact time.展开更多
The PAL was synthesized with BA,MMA and some monomers containing carboxyl groups(for example,acrylic acid(AA) and methacrylic acid(MAA)) as co-monomers by semi-continuous seeded emulsion polymerization technique...The PAL was synthesized with BA,MMA and some monomers containing carboxyl groups(for example,acrylic acid(AA) and methacrylic acid(MAA)) as co-monomers by semi-continuous seeded emulsion polymerization technique.The influences of alkalinization temperature,the feeding manner of AA or MAA on the particles size,rheological properties and carboxyl distribution of the latex were discussed,and the rheological mechanism was analyzed.The experimental results show that the PAL system has preferable viscosity and particle size when the alkalinization temperature is 50 ℃.Different distribution of carboxyl group in the particles and different resultant rheological properties are obtained by different feeding manner of AA or MAA into the system.The TEM images show that the particle is a smooth globe with carboxyl group concentrating on the surface and stabilized with electric double layer and nonionic adsorbed layer.The concentration of carboxyl functional group on the surface of particles can be achieved by the specific polymerization technique.The rheologyical properties are determined by accretion of particle volume and variation of the two phase volume ratio resulted from the carboxyl group spreading layer.展开更多
Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indi...Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indicated thatthe polymerization could be completed in about 30 min and produce polymer with high molecular weight(10~6~10~7).It wasfound that monomer droplets are the main sites for the polymerization(nucleation).With the increase of DMPAconcentration,polymerization rate(R_p)reaches a maximum value while molecular weight of the produced polymer has anadverse result,but the dependence of R_p on incident light intensity is similar.Influences of other parameters such asmonomer concentration,emulsifier content and reaction temperature,etc.were also studied.At lower pH values of waterphase,R_p depends strongly on the pH due to the electrostatic interaction between the ionized radicals and the monomer.Athigher pH,R_p shows a slight dependence on pH.展开更多
Polyacrylonitrile-block-poly(methyl acrylate)(P(AN-b-MA)) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization employing macro-RAFT agent (PAN-RAFT) as the chain transfer...Polyacrylonitrile-block-poly(methyl acrylate)(P(AN-b-MA)) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization employing macro-RAFT agent (PAN-RAFT) as the chain transfer agent and azobis(isobutyronitrile) (AIBN) as the initiator. A linear relationship between ln([M]0/[M]1) and reaction time was observed. The molecular structure of P(AN-b-MA) was characterized by ^1H-NMR, element analysis, FTIR and SEC. The molecular weight distribution (MWD) was less than 1.40, the Mn could be controled from 0.733 to 4.834×10^4, and the molar content of MA in P(AN-b-MA) were from 15.6 to 75.0 percentage, respectively.展开更多
UV curable hyperbranched prepolymers based on amine-ester, ester-amide and ether-amide started with AB_2-type monomers have been prepared by the authors. A series of work on allyl ether maleate hyperbranched polyester...UV curable hyperbranched prepolymers based on amine-ester, ester-amide and ether-amide started with AB_2-type monomers have been prepared by the authors. A series of work on allyl ether maleate hyperbranched polyesters for UV curing coatings by Hult and his colleagues has been reported. However, the UV cured films from those materials are all flammable when attached to fire without addition of flame retardants.展开更多
A novel UV-curable prepolymer hexanediol diglycidyl ether diacrylate (HDGEA) was synthesized by utilizing hexanediol diglycidyl ether (HDGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine ...A novel UV-curable prepolymer hexanediol diglycidyl ether diacrylate (HDGEA) was synthesized by utilizing hexanediol diglycidyl ether (HDGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimal synthetic conditions were that the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ℃, and the molar ratio of HDGE to AA was 1︰2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-curing initiator was added to the synthesized HDGEA to prepare a kind of UV-curing coating. The mechanical properties of the UV-cured films were determined, giving 31.87 MPa of tensile strength, 871.88 MPa of Young's modulus and 6.77% of elongation at tear.展开更多
UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl...UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl acrylate (HEA), polyethyleneglycol (PEG-200)and nano-SiO2. The UV curing kinetics of the films was investigated by FTIR. The results show that the curing speed of the films increases with the adding of nano-SiO2 and decreases with the adding of PUDA due to the slower chain movement. The thermal stability of the HBPUA-PUDA/SiO2 films was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR). The results show that all films exhibit two degradation stages located at about 320 and 440℃ corresponding to the degradation for hard segments of urethane-acrylate and the degradation for soft segment and polyester core. In addition, the results from the analysis of TGA/FTIR also indicate that the decomposition temperature of HBPUA-PUDA/SiO2 film is 15℃ higher than that obtained for pure polymer. The degradation mechanism was proposed according to TGA/FTIR results.展开更多
基金supported by the Preparation and Characterization of Fogging Agents,Cooperative Project of China(Grant No.1900030040)Preparation and Test of Fogging Agents,Cooperative Project of China(Grant No.2200030085)。
文摘Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.
基金supported by the National Natural Science Foundation of China (Grant No.51991361 and Grant No.51874329)。
文摘The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.
基金Funded by the National Natural Science Foundation of China(31170558)the Fundamental Research Funds for the Central Universities(410500006)
文摘A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in waterborne media.TEM,FTIR,XPS,and EDX determination showed that PAA and SiO2 were coated on the surface of aluminum.Evolved hydrogen detection showed that the corrosion resistance of composite particle had been markedly improved.Maximum corrosion inhibition efficiency of SiO2 coated aluminum(SiO2@Al)was 95.1% while that of double-layer coated aluminum(PAA/SiO2@Al)was 98.8%.Meanwhile,polyacrylic acid layer improved the agglomeration of aluminum significantly.According to the dispersibility test,the particle size of 50% volume fraction [d(0.5)] of aluminum,SiO2@Aland PAA/SiO2@Alwere 42,53,and 34 μm,respectively.
文摘Despite the great potential of cellulose wood pulp and cellulose nanofibrils as reinforcing filler in thermoplastics,its use is limited due to its tendency to form agglomerates and due to its high hydrophilic character.Here we describe fiberboard composites with high contents of wood pulp or cellulose nanofibrils,and a resin of poly(styrene-methyl-methacrylate-acrylic acid)used as water-based emulsion.Cellulose wood pulp and cellulose nanofibrils were used directly in the form of water suspensions.The method is based on the flocculation of the polymer emulsion followed by agglomeration of a mixture of the polymer emulsion and cellulose suspension,leading to the co-precipitation of the composite material,which can be easily separated from the water phase.Composites with acrylic polymer/cellulose fibers in the proportions of 75:25,50:50 and 25:75 wt%were prepared.Composites were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),thermogravimetric analysis(TGA),dynamic mechanical analysis(DMA)and water absorption tests.SEM analysis revealed a very good dispersion of the fibers without evidence of agglomeration,which led to superior mechanical properties.These results showed the effectiveness of the methodology and the potential of cellulose wood pulp and CNF as reinforcement fillers in fiberboard composites and any other high fiber-content materials.
基金supported by the Science Foundation of Shanghai Municipal Education Commission (Grant No.03AK59)
文摘Reactive acrylate microgels with different reactive groups such as carboxyl, hydroxide groups had excellent properties such as quick-dry, low viscosity, high adhesion and hardness, which made them extensively used in preparing paints or in coating-modification. Reactive acrylate microgels were prepared by emulsion co-polymerization with zwitterions surfactant, anionic surfactant and nonionic surfactant as co-emulsifier. The water-base baking paints made from reactive acrylate microgels and melamine-formaldehyde resin had excellent combination properties. The aluminium powder can be well-dispersed in the paints. The influences of monomer components on the properties of the water-base baking paints were discussed in this paper. And the baking paints were also compared with the marketing solvent acrylate baking paints. It was found that the water-base acrylate amino baking paints had better combination properties than the organic solvent acrylate baking paints, which means that the water-base baking paints had a bright marketing future.
文摘By means of initiation of the high temperature and shearing stress of an extruder,we synthesized the graft copolymer of starch with acrylate monomers based on the simple dry method.The effects of reaction conditions on graft copolymerization were discussed. Grafted starch used as a compatibilizer for the blend system of starch and polyethylene was further investigated. The results indicate that grafted starch as a compatibilizer can improve the mechanical properties and rheologic properties of the blend of starch and polyethylene.
文摘Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolymerization. The variables affecting the degree of grafting, such as the time of UV (Ultraviolet-visible) irradiation and the concentrations of the methyl acrylate and photoinitiator, were investigated. The graft copolymer membranes were prepared by the phase inversion method. The chemical and morphological changes were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), scanning electron microscopy, and water contact angles measurements. Results revealed that methyl acrylate groups were present on the membranes and the graft degree of methyl acrylate had remarkable effect on the performance of membranes. Pure water contact angle on the membrane surface decreases with the increase of methyl acrylate graft degree, which indicated that the hydrophilicity of graft copolymer membranes was improved. The permeation fluxes of pure water and bovine serum albumin solution were measured to evaluate the antifouling property of graft copolymer membranes, the results of which have shown an enhancement of antifouling property for graft copolymer membranes.
基金This research was supported by the Science and Technology Key Project of Guangdong(A1070203).
文摘Unsaturated polyester resin (UPR)/acrylate-terminated polyurethane (ATPU)/organo-modified montmorillonite (OMMT) nanocomposites were prepared by the in situ intercalative polymerization method. Samples were prepared by the sequential mixing, i.e. mixture of the ATPU and styrene (S) and OMMT were prepared in the first step; UPR was then added to the pre-intercalates of ATPU/S/OMMT. Results indicate that the mechanical properties and thermal properties of UPR/ATPU/OMMT nanocomposites greatly depend on the amount of ATPU and OMMT. Results show that the addition of ATPU could increase the impact strength of UPR/ATPU composites, but the tensile strength, flexural strength and heat resistance of the materials are obviously decreased. When the weight ratio between UPR, ATPU and OMMT were 82:15:3, the impact strength and heat distortion-temperature of nanocomposite were greatly improved, meanwhile there was little change for other properties of the nanocomposites. The synergistic enhancement effects of ATPU and OMMT on the composites were observed. The structures and morphology of the composites were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy.
基金Funded by the National High Technology Research and Development Program("863"Program)(No.2003AA305071)
文摘In order to prepare hydrophobic waterborne polyurethane coatings with better performances, the silicon-containing waterborne polyurethane(SiWPU) with functional chain extender hydroxyethyl acrylate(HEA) was prepared first, and then a series of silicon&fluorine-containing polyurethane/acrylate(FSiPUA) emulsions were obtained with flourine containing acrylic monomer by seed emulsion polymerization, introducing micro-nano SiO2 into FSiPUA emulsion to make the final hybrid emulsion. The properties of Si WPU, FSiPUA and SiO2/FSiPUA were investigated by fourier transform infrared spectra(FTIR), transmission electron microscope(TEM), Scanning Electron Microscope(SEM) and some other analytical methods. The results revealed that FSiPUA emulsion particles possessed composite core-shell structure and FSiPUA films with suitable ratio performed better than Si WPU films in hardness, water resistance and solvent resistance. The SiO2/FSiPUA films with micro-nano dual roughness structure showed a water contact angle of 136° with good resistance to acid and alkali.
基金Project(2007168303) supported by Guangdong-Hong Kong Technology Cooperation Funding
文摘Two kinds of UV curable polyurethane acrylate oligomers (PUPA and PUCA) were synthesized via the addition reaction between isophorone diisocyanate (IPDI) and polyethylene glycol monoacrylate (PEA6) or polycaprolactone modified hydroxyethyl acrylate (PCLA2). The structures of PUPA and PUCA were characterized by Fourier transform infrared spectroscopy (FT-IR), IH nuclear magnetic resonance (^H NMR), gel permeation chromatography (GPC) and differential scanning calorimeter (DSC), and the thermal stability and dynamic mechanical thermal properties of their cured films were measured by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. The viscosity of the oligomers and mechanical properties of the cured films were also studied. The results show that both oligomers have narrow molecular weight distribution. The viscosity of PUPA is 2.310 Pa.s at 25 ℃, while that of PUCA is: up to 3.980 Pa-s. The UV cured PUPA and PUCA films have homogeneous phase structure, and the PUCA film shows higher glass transition temperature and storage modulus. Furthermore, the PUCA film possesses better mechanical properties than PUPA, while the latter shows better alkali resistance.
基金This work was supported by the "The National High Technology Research and Development Program" of Ministry of Science and Technology of China (No. 2002AA333020).
文摘The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylaterubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin to acrylate rubberand its incompatible blend can cause a remarkable improvement in the temperature dependence of the loss tangent. As a result, the present blends are very good damping materials.
文摘A novel ohthalazinone modified epoxy acrylate resin for the high temperature resistant ultravioet (UV) curable coating.was syn-thesized.The methacrylated epoxy resins obtained were utilized to UV radiation curing by taking 2.5% (wt%) of photoinitiator in combination with 20% (wt%) of diluent, and generated the interpenetraring polymer networks. The cured film had good thermal and chemical stability.
基金the Innovatory Group Program of the Natural Science Foundation of Hubei Province(No.2004ABC001)the National"863"Hi-tech Foundation of China(No.2002AA6Z3083)
文摘A novel UV-curable prepolymer polypropyleneglycol diglycidyl ether diacrylate (PPGGEA) was synthesized by utilizing polypropyleneglycol diglycidyl ether (PPGGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthetic conditions were in the following: the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ~C, and the molar ratio of PPGGE to AA was 1:2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-cured initiator was added to the synthesized PPGGEA to prepare a kind of UV-cured coating. The mechanical properties of the UV-cured films were determined, giving 29.99 MPa of tensile strength, 834.27 MPa of the Young's modulus and 5.66% of elongation at tear.
基金he Special Foundation for State Major Basic Research Program of China(2007CB707805,2004CCA05500)
文摘The production of acrylates from biomass-originated lactic acid is of extraordinary importance, to overcome the increasing worldwide shortage of petroleum. In this study, the catalytic dehydration of methyl lactate over a calcium sulfate catalyst, with various promoters, has been carried out to identify potential catalyst/promoter combinations for acrylate production. The best catalyst for methyl acrylate formation in this study has been calcium sulfate, with cupric sulfate and phosphates as promoters. The optimal mass ratio of m(CaSOa) : m(CuSOa) : m(Na2HPO4) : m(KH2PO4) is 150.0 : 13.8 : 2.5 : 1.2. Effects of carrier gas, reaction temperature, feed concentration as well as contact time on the dehydration of methyl lactate have been investigated. With nitrogen as a carrier gas, a combined yield of acrylic acid and methyl acrylate is 63.9% from 60% (by mass) methyl lactate at 400℃ with 7.7 seconds contact time.
基金Funded by the National Natural Science Foundation of China (No.50803017)
文摘The PAL was synthesized with BA,MMA and some monomers containing carboxyl groups(for example,acrylic acid(AA) and methacrylic acid(MAA)) as co-monomers by semi-continuous seeded emulsion polymerization technique.The influences of alkalinization temperature,the feeding manner of AA or MAA on the particles size,rheological properties and carboxyl distribution of the latex were discussed,and the rheological mechanism was analyzed.The experimental results show that the PAL system has preferable viscosity and particle size when the alkalinization temperature is 50 ℃.Different distribution of carboxyl group in the particles and different resultant rheological properties are obtained by different feeding manner of AA or MAA into the system.The TEM images show that the particle is a smooth globe with carboxyl group concentrating on the surface and stabilized with electric double layer and nonionic adsorbed layer.The concentration of carboxyl functional group on the surface of particles can be achieved by the specific polymerization technique.The rheologyical properties are determined by accretion of particle volume and variation of the two phase volume ratio resulted from the carboxyl group spreading layer.
基金This work was supported by the Scientific Research Foundation for Youth(No.QN0404).
文摘Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indicated thatthe polymerization could be completed in about 30 min and produce polymer with high molecular weight(10~6~10~7).It wasfound that monomer droplets are the main sites for the polymerization(nucleation).With the increase of DMPAconcentration,polymerization rate(R_p)reaches a maximum value while molecular weight of the produced polymer has anadverse result,but the dependence of R_p on incident light intensity is similar.Influences of other parameters such asmonomer concentration,emulsifier content and reaction temperature,etc.were also studied.At lower pH values of waterphase,R_p depends strongly on the pH due to the electrostatic interaction between the ionized radicals and the monomer.Athigher pH,R_p shows a slight dependence on pH.
文摘Polyacrylonitrile-block-poly(methyl acrylate)(P(AN-b-MA)) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization employing macro-RAFT agent (PAN-RAFT) as the chain transfer agent and azobis(isobutyronitrile) (AIBN) as the initiator. A linear relationship between ln([M]0/[M]1) and reaction time was observed. The molecular structure of P(AN-b-MA) was characterized by ^1H-NMR, element analysis, FTIR and SEC. The molecular weight distribution (MWD) was less than 1.40, the Mn could be controled from 0.733 to 4.834×10^4, and the molar content of MA in P(AN-b-MA) were from 15.6 to 75.0 percentage, respectively.
基金Supported by the National Natural Science Foundation of China(No. 20074034).
文摘UV curable hyperbranched prepolymers based on amine-ester, ester-amide and ether-amide started with AB_2-type monomers have been prepared by the authors. A series of work on allyl ether maleate hyperbranched polyesters for UV curing coatings by Hult and his colleagues has been reported. However, the UV cured films from those materials are all flammable when attached to fire without addition of flame retardants.
基金Funded by the Natural Science Foundation of Jiangxi Province (No.2008GZC0021)the National "863" Hi-tech Foundation of China (No.2002AA6Z3083)
文摘A novel UV-curable prepolymer hexanediol diglycidyl ether diacrylate (HDGEA) was synthesized by utilizing hexanediol diglycidyl ether (HDGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimal synthetic conditions were that the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ℃, and the molar ratio of HDGE to AA was 1︰2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-curing initiator was added to the synthesized HDGEA to prepare a kind of UV-curing coating. The mechanical properties of the UV-cured films were determined, giving 31.87 MPa of tensile strength, 871.88 MPa of Young's modulus and 6.77% of elongation at tear.
文摘UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl acrylate (HEA), polyethyleneglycol (PEG-200)and nano-SiO2. The UV curing kinetics of the films was investigated by FTIR. The results show that the curing speed of the films increases with the adding of nano-SiO2 and decreases with the adding of PUDA due to the slower chain movement. The thermal stability of the HBPUA-PUDA/SiO2 films was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR). The results show that all films exhibit two degradation stages located at about 320 and 440℃ corresponding to the degradation for hard segments of urethane-acrylate and the degradation for soft segment and polyester core. In addition, the results from the analysis of TGA/FTIR also indicate that the decomposition temperature of HBPUA-PUDA/SiO2 film is 15℃ higher than that obtained for pure polymer. The degradation mechanism was proposed according to TGA/FTIR results.