期刊文献+
共找到627篇文章
< 1 2 32 >
每页显示 20 50 100
Improving the anti-collapse performance of water-based drilling fluids of Xinjiang Oilfield using hydrophobically modified silica nanoparticles with cationic surfactants 被引量:1
1
作者 He Li Xian-Bin Huang +3 位作者 Jin-Sheng Sun Kai-He Lv Xu Meng Zhen Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1768-1778,共11页
Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of... Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs. 展开更多
关键词 Hydrophobic nanoparticle Wetting alteration Wellbore stability water-based drilling fluids SHALE
下载PDF
Hydrophobic Small-Molecule Polymers as High-Temperature-Resistant Inhibitors in Water-Based Drilling Fluids
2
作者 Xuyang Yao Kecheng Liu +5 位作者 Zenan Zhou Jun Zhou Xianbin Huang Tiemei Lu Yongsheng Yu He Li 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1775-1787,共13页
Water-based drilling fluids can cause hydration of the wellbore rocks,thereby leading to instability.This study aimed to synthesize a hydrophobic small-molecule polymer(HLMP)as an inhibitor to suppress mud shale hydra... Water-based drilling fluids can cause hydration of the wellbore rocks,thereby leading to instability.This study aimed to synthesize a hydrophobic small-molecule polymer(HLMP)as an inhibitor to suppress mud shale hydration.An infrared spectral method and a thermogravimetric technique were used to characterize the chemical composition of the HLMP and evaluate its heat stability.Experiments were conducted to measure the linear swelling,rolling recovery rate,and bentonite inhibition rate and evaluate accordingly the inhibition performance of the HLMP.Moreover,the HLMP was characterized through measurements of the zeta potential,particle size distribution,contact angles,and interlayer space testing.As confirmed by the results,the HLMP could successfully be synthesized with a favorable heat stability.Furthermore,favorable results were found for the inhibitory processes of the HLMP on swelling and dispersed hydration during mud shale hydration.The positively charged HLMP could be electrically neutralized with clay particles,thereby inhibiting diffusion in the double electron clay layers.The hydrophobic group in the HLMP molecular structure resulted in the formation of a hydrophobic membrane on the rock surface,enhancing the hydrophobicity of the rock.In addition,the small molecules of the HLMP could plug the spaces between the layers of bentonite crystals,thereby reducing the entry of water molecules and inhibiting shale hydration. 展开更多
关键词 water-based drilling fluids hydrophobic polymers shale inhibitor temperature resistance
下载PDF
Performance Analysis of a Profile Control Agent for Waste Drilling Fluid Treatment
3
作者 Xueyu Zhao 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1897-1905,共9页
A method for the treatment of hazardous waste drilling fluids,potentially leading to environmental pollution,is considered.The waste drilling fluid is treated with an inorganic flocculant,an organic flocculant,and a p... A method for the treatment of hazardous waste drilling fluids,potentially leading to environmental pollution,is considered.The waste drilling fluid is treated with an inorganic flocculant,an organic flocculant,and a pH regulator.The profile control agent consists of partially hydrolyzed polyacrylamide,formaldehyde,hexamethylenetetramine,resorcinol,phenol,and the treated waste drilling fluid itself.For a waste drilling fluid concentration of 2500 mg/L,the gelling time of the profile control agent is 25 h,and the gelling strength is 32,000 mPa.s.Compared with the profile control agent prepared by recirculated water under the same conditions,the present profile control agent displays better stability,salt-resistance,and performance. 展开更多
关键词 waste drilling fluid profile control agent cross-linking system GEL environmental protection
下载PDF
High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells 被引量:9
4
作者 Wang Fuhua Tan Xuechao +3 位作者 Wang Ruihe Sun Mingbo Wang Li Liu Jianghua 《Petroleum Science》 SCIE CAS CSCD 2012年第3期354-362,共9页
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines... To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site. 展开更多
关键词 High-density water-based drilling fluid rheological behavior CLAY high temperature high pressure linear fitting rheological model mathematical model
下载PDF
Carbon nanotube enhanced water-based drilling fluid for high temperature and high salinity deep resource development 被引量:3
5
作者 Jing-Ping Liu Xian-Fa Zhang +6 位作者 Wen-Chao Zhang Kai-He Lv Yin-Rui Bai Jin-Tang Wang Xian-Bin Huang Jia-Feng Jin Jin-Sheng Sun 《Petroleum Science》 SCIE CAS CSCD 2022年第2期916-926,共11页
Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite i... Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite in the drilling fluid and cause the coalescence of bentonite particles.As a result,the particles coalesce,the grid structure is destroyed,and the rheological properties,rock-carrying capacity and filtration properties are lost.To resolve the foregoing,in this study,0.05-wt%carbon nanotubes are introduced into a 4%bentonite drilling fluid under conditions where the temperature and concentration of added Na Cl reach 180°C and 10 wt%,respectively.The carbon nanotubes adsorb on the bentonite surface and increase the space among bentonite particles.The steric hindrance prevents the coalescence of bentonite in high temperature and high salt environment.Thus bentonite maintains the small size distribution of bentonite and supports the bentonite grid structure in the drilling fluid.As a result,the rock-carrying capacity of the drilling fluid increases by 85.1%.Moreover,the mud cake formed by the accumulation of small-sized bentonite particles is dense;consequently,the filtration of bentonite drilling fluid reduced by 30.2%. 展开更多
关键词 High temperature water-based drilling fluid High salinity Carbon nanotube Deep resources
下载PDF
Preparation of High Effective Flocculant for High Density Waste Drilling Mud 被引量:3
6
作者 Fanghui Wang Jing Zou +2 位作者 Hong Zhu Kefei Han Jiantao Fan 《Journal of Environmental Protection》 2010年第2期179-182,共4页
To satisfy the requirement on the separation of solid and liquid in waste drilling mud, prepare a high effective floccu-lant for high density waste drilling mud used starch, 2-Trimethylammonium ethyl methacrylate chlo... To satisfy the requirement on the separation of solid and liquid in waste drilling mud, prepare a high effective floccu-lant for high density waste drilling mud used starch, 2-Trimethylammonium ethyl methacrylate chloride (DMC) and acrylamide (AM). The result showed that when the ratio of starch, DMC and AM was 2:1:3, the weight of initiator (po-tassium persulfate) was 0.2% of the AM, reaction temperature was 65℃ and reaction time was 5h, the performance of product was the best. The water content in filter cake was 27.6% after the waste drilling mud disposed by the optimization flocculant. The flocculent effect of optimization flocculant was superior to that of other flocculant in market. 展开更多
关键词 HIGH Density waste drilling MUD Dispose CATION
下载PDF
Synergistic inhibition of polyethylene glycol and potassium chloride in water-based drilling fluids 被引量:2
7
作者 Dan-Chao Huang Gang Xie +7 位作者 Ni-Yuan Peng Jian-Guo Zou Yao Xu Ming-Yi Deng Wei-Chao Du Yu-Rong Xiao Jin-Jun Huang Ping-Ya Luo 《Petroleum Science》 SCIE CAS CSCD 2021年第3期827-838,共12页
Mud shale hydration and swelling are major challenges in the development of water-based drilling fuids(WBDFs).In this work,the inhibition performance and inhibition mechanism of polyethylene glycol(PEG)and potassium c... Mud shale hydration and swelling are major challenges in the development of water-based drilling fuids(WBDFs).In this work,the inhibition performance and inhibition mechanism of polyethylene glycol(PEG)and potassium chloride(KCl)were investigated by hot rolling recovery tests,linear swell tests,Fourier transform infrared spectroscopy,X-ray difraction,atomic absorption spectrophotometry and X-ray photoelectron spectroscopy.The experimental results show that the combination of PEG and KCl achieved higher recovery and lower linear swelling rate than those obtained by individual PEG or KCl.Compared to the d-spacing of Na-montmorillonite(Na-Mt)with PEG or KCl,the d-spacing of Na-Mt with PEG+KCl was lower,which indicates that KCl and PEG have synergistic inhibition efect.This synergistic efect can replace sodium ions and water molecules from the interlayer space of Na-Mt and decrease the d-spacing of Na-Mt.Based on the above experimental results and analysis,a method for optimizing PEG and KCl concentrations was proposed and further verifed by rheological and hot rolling recovery tests of WBDFs.Hence,the results of this work can provide valuable theoretical guidance for developing other synergistic inhibitors. 展开更多
关键词 Clay hydration INHIBITOR Synergistic inhibition Polyethylene glycol water-based drilling fuids
下载PDF
Investigation of regulating rheological properties of water-based drilling fluids by ultrasound 被引量:1
8
作者 Wei-An Huang Jing-Wen Wang +4 位作者 Ming Lei Gong-Rang Li Zhi-Feng Duan Zhi-Jun Li Shi-Fu Yu 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1698-1708,共11页
Regulating rheological properties of water-based drilling fluids has always been a hot topic.This paper proposed a new method for regulating rheological properties of water-based drilling fluids by ultrasonic field.Th... Regulating rheological properties of water-based drilling fluids has always been a hot topic.This paper proposed a new method for regulating rheological properties of water-based drilling fluids by ultrasonic field.The experimental results showed that the ultrasound increased the viscosity and yield point of bentonite suspension by reducing the particle size of clay,destroying the network structure between clay particles,increasing the mud yield and the cation exchange capacity of bentonite,and promoting the hydration dispersion of bentonite.The change of rheological property showed a memory effect at room temperature and high temperature.Besides,the ultrasonic energy affected the network structure between clays and polymer chains,thus regulating the rheological properties of the bentonite-polymer system.For two types of drilling fluids investigated,the rheology of the poly-sulfonate drilling fluid was regulated by damaging the grid structure between additives and clays by low-power ultrasound and reducing the clay particle size by high-power ultrasound,while the rheology of the deep-water drilling fluid was mainly regulated by disentangling the spatial grid structure between additives.Additionally,ultrasound showed no effect on the lubricity,inhibition and stability of drilling fluids,which proved the feasibility of ultrasound to regulate rheological properties of water-based drilling fluids. 展开更多
关键词 ULTRASOUND SUSPENSION water-based drilling fluid Rheological property
下载PDF
Notoginsenoside as an environmentally friendly shale inhibitor in water-based drilling fluid 被引量:1
9
作者 Jin-Sheng Sun Zong-Lun Wang +6 位作者 Jing-Ping Liu Kai-He Lv Fan Zhang Zi-Hua Shao Xiao-Dong Dong Zhi-Wen Dai Xian-Fa Zhang 《Petroleum Science》 SCIE CAS CSCD 2022年第2期608-618,共11页
The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systemat... The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systematically studied for the first time.The inhibition performance of NS was evaluated via inhibition evaluation tests,including mud ball immersion tests,linear expansion tests,shale rolling recovery tests,and compressive strength tests.The inhibition mechanism of NS was analyzed using Fourier transform infrared spectroscopy(FTIR),contact angle measurements,particle size distribution determination,thermogravimetric analysis(TGA),and scanning electron microscopy(SEM).The experimental results demonstrate that NS is able to adhere to the clay surface,forming a hydrophobic film that prevents the entry of water molecules and inhibiting the hydration dispersion of the clay.Because of this,NS can maintain the original state of bentonite pellets in water,which can effectively reduce the swelling rate of bentonite,increase the recovery rate of shale drill cuttings,maintain the strength of the shale,and therefore maintain the stability of the borehole wall during drilling.In addition,NS is non-toxic,degradable,and compatible with water-based drilling fluids.The above advantages make NS a promising candidate for use as an environmentally friendly shale inhibitor. 展开更多
关键词 Notoginsenoside Shale inhibition Environmentally friendly water-based drilling fluid Inhibition mechanism
下载PDF
Application of sustainable basil seed as an eco-friendly multifunctional additive for water-based drilling fluids 被引量:1
10
作者 Xin Gao Han-Yi Zhong +3 位作者 Xian-Bin Zhang An-Liang Chen Zheng-Song Qiu Wei-An Huang 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1163-1181,共19页
Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-bas... Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-based drilling fluids.The chemical composition,water absorbency,rheological properties of aqueous suspension of BSP were tested.The effect of BSP on the rheological and filtration of bentonitebased drilling fluid before and after thermal aging was investigated.The inhibition characteristics were evaluated by linear swelling,shale cuttings dispersion and shale immersion test.Lubricity improvement by BSP was measured with extreme pressure lubricity test.The results revealed that incorporation of BSP into bentonite suspension improved rheological and filtration properties effectively after thermal aging of 120℃.BSP exhibited superior inhibitive capacity to xanthan and synergistic effect with KCl.BSP could reduce friction by forming hydration layer.The nanoscale three-dimensional network structures enable BSP to maintain high water retention and absorb strongly on bentonite and metal surface,contributing to enhanced rheology,filtration,inhibition and lubrication properties.The versatile characteristic of BSP,as well as biodegradation makes it a promising additive using in high performance water-based drilling fluid and a potential alternative to conventional synthetic polymers. 展开更多
关键词 Basil seed Water absorbency MULTIFUNCTION water-based drilling fluid Three-dimensional network
下载PDF
Super-amphiphobic, strong self-cleaning and high-efficiency water-based drilling fluids 被引量:2
11
作者 JIANG Guancheng NI Xiaoxiao +2 位作者 LI Wuquan QUAN Xiaohu LUO Xuwu 《Petroleum Exploration and Development》 2020年第2期421-429,共9页
Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free... Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free energy, prevent collapse, protect reservoir, lubricate and increase drilling speed. With this super-amphiphobic agent as the core agent, a super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid system has been developed by combining with other agents based on drilled formation, and compared with high-performance water-based drilling fluid and typical oil based drilling fluid commonly used in oilfields. The results show that the super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid has better rheology, and high temperature and high pressure filtration similar with that of oil-based drilling fluid, inhibiting and lubricating properties close to oil based drilling fluid. Besides, the super-amphiphobic system is non-toxic, safe and environmentally friendly. Field tests show this newly developed drilling fluid system can prevent wellbore collapse, reservoir damage and pipe-sticking, increase drilling speed and lower drilling cost, meeting the requirement of safe, high efficient, economic and environmentally friendly drilling. Compared with other drilling fluids, this new drilling fluid system can reduce downhole complexities by 82.9%, enhance the drilling speed by about 18.5%, lower drilling fluid cost by 39.3%, and increase the daily oil output by more than 1.5 times in the same block. 展开更多
关键词 POLYMER super-amphiphobic agent water-based drilling fluid reservoir protection wellbore stability
下载PDF
Environmental Impact Assessment of Heavy Metals in Surface Disposed Drilling Waste 被引量:1
12
作者 Ullattumpoyil Nasir M. Absi Saeed S. Marzooq Yousif 《Journal of Geoscience and Environment Protection》 2021年第9期227-238,共12页
Saudi Arabia has </span><span style="font-family:Verdana;">some of </span><span style="font-family:Verdana;">the biggest oil and gas reserves in the world, </span><... Saudi Arabia has </span><span style="font-family:Verdana;">some of </span><span style="font-family:Verdana;">the biggest oil and gas reserves in the world, </span><span style="font-family:Verdana;">and has</span><span style="font-family:Verdana;"> expanded its drilling operations gradually to meet the global demand.</span><span style="font-family:""> </span><span style="font-family:Verdana;">Improper handling of contaminated drilling wastes may cause serious negative environmental impacts. The current study investigates the toxicological effects of heavy metals in drilling waste by </span><span style="font-family:""><span style="font-family:Verdana;">quantification and developing different contamination indices</span><span style="font-family:Verdana;">. Solid and liquid samples from different drilling waste pits were collected and analyzed for heavy metals. The average concentration varies significantly and decrease</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in the order of Fe > Al > Sr > Mn > Cu > Cr > Zn > Ni > Pb > Cd > Ag > Co. The spatial variation showed </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">highest concentration at SDGM Site 1, West. Comparison of current data </span><span style="font-family:Verdana;">showed</span><span style="font-family:Verdana;"> continental crust average values within the specifications for most of the sites. For metals like Cd, Cr and Cu, the concentration is higher than the continental crust value. Indices such as pollution load index, modified degree of contamination etc. were calculated from the available data. </span><span style="font-family:Verdana;">The </span><span style="font-family:Verdana;">contamination level for different site calculat</span><span style="font-family:Verdana;">ions</span><span style="font-family:Verdana;"> showed nil to a very low degree of contamination. Spatial variation of the contamination level indicated comparatively higher values for sites UTMN-4 and SDGM-1 North, which indicates the necessity of precautionary methods. The metal concentration in the pit water samples exceeded generally accepted standards, if this water w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> to be discharged/leaked from the pit. </span><span style="font-family:Verdana;">The </span><span style="font-family:Verdana;">current study concluded presence of different heavy metals in samples from the drilling waste pits, whereas the degree of contamination is minute. 展开更多
关键词 PETROLEUM drilling waste Heavy Metals TOXICITY
下载PDF
A new environmentally friendly water-based drilling fluids with laponite nanoparticles and polysaccharide/polypeptide derivatives
13
作者 Xin-Liang Li Guan-Cheng Jiang +2 位作者 Yi Xu Zheng-Qiang Deng Kai Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2959-2968,共10页
Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drillin... Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drilling fluids(OBDFs).However,few of these drilling fluids are entirely composed of natural materials,which makes it difficult to achieve real environmental protection.Using laponite nanoparticles and various derivatives of natu ral mate rials,including cro sslinked starch,cellulose composite,gelatin ammonium salt,poly-l-arginine,and polyanionic cellulose,a kind of environmentally friendly water-based drilling fluid(EF-WBDF)was built for drilling in environment-sensitive areas.The properties of this EF-WBDF were evaluated by thermal stability tests on rheology,filtration,inhibition,and salt contamination.Besides,biological toxicity,biodegradability,heavy mental content and wheat cultivation tests were conducted to investigate the environmental factor of EF-WBDF.Results showed that EF-WBDF displayed satisfactory thermal resistance up to 150℃,and the rheological properties did not suffer significant fluctuation,showing potential application in high-temperature wells.The optimal rheological model of EF-WBDF was Herschel-Bulkley model.This EF-WBDF performed an eligible filtration of 14.2 mL at 150℃and a differential pressure of 3.5 MPa.This fluid could still maintain colloidal stability after being contaminated by 7.5%NaCl or 0.5%CaC1_(2).Meanwhile,rather low clay swelling degree of 2.44 mm and high shale recovery of more than 95%ensured the inhibitive capability of EF-WBDF.Furthermore,EF-WBDF presented a half maximal effective concentration(EC_(50))of51200 mg/L and a BOD/COD ratio of 47.55%,suggesting that EF-WBDF was non-toxic and easily biodegradable.The wheat cultivated in EF-WBDF could grow healthily,beneficial for reducing the adverse impact on ecological environment.The formed EF-WBDF has a promising future for drilling in environment-sensitive and high-temperature areas. 展开更多
关键词 water-based drilling fluids Environmental protection High-temperature resistance Laponite nanoparticles Natural materials Wellbore stability
下载PDF
Study on Hardening and Reuse Technology of Drilling Waste
14
作者 Jipeng WANG Jiafang XU +2 位作者 Tingji DING Lin PENG Rui ZHANG 《Meteorological and Environmental Research》 CAS 2020年第3期64-69,共6页
In order to meet the increasingly strict environmental requirements and achieve the comprehensive utilization of waste in drilling operation,three techniques were used to harden the drilling waste.The three techniques... In order to meet the increasingly strict environmental requirements and achieve the comprehensive utilization of waste in drilling operation,three techniques were used to harden the drilling waste.The three techniques are cement hardening technology,fly ash hardening technology and quicklime-sodium silicate hardening technology.Orthogonal analysis was used to evaluate and optimize the experimental results from the three techniques.The results show that the hardening system of quicklime-sodium silicate is not satisfying,and the compressive strength of hardened body is only 1.32 MPa.The optimal mass ratio in cement hardening system is drilling waste∶water∶YHJ1∶YHJ2∶YHJ3∶cement = 10∶4∶3.2∶2.2∶0.5∶4.The optimal mass ratio in fly ash hardening system is drilling waste∶water∶YHJ1∶YHJ2∶YHJ3∶fly ash = 10∶4∶3.2∶1.8∶1.5∶2.The compressive strength reaches 3.19 and 2.95 MPa respectively.Based on this strength,the hardened body can be used as low-strength building bricks,subgrade or nutrition bowls in arid regions to achieve the reuse of drilling waste. 展开更多
关键词 drilling waste Hardening technology REUSE CEMENT Fly ash
下载PDF
Preparation of Nano-Modified Polyacrylamide and Its Application on Solid-Liquid Separation in Waste Drilling Mud
15
作者 Fanghui Wang Jiantao Fan +3 位作者 Hong Zhu Kefei Han Jing Zou Haiyun Sun 《Advances in Chemical Engineering and Science》 2011年第2期33-36,共4页
To satisfy the requirement on solid-liquid separation in high-density waste drilling mud, prepare the nano-modified polyacrylamide(PAM) flocculant for high density waste drilling mud by in-situ dispersion method, dire... To satisfy the requirement on solid-liquid separation in high-density waste drilling mud, prepare the nano-modified polyacrylamide(PAM) flocculant for high density waste drilling mud by in-situ dispersion method, direct dispersion method and simultaneous formation method. The result showed the flocculent effect of nano-modified polyacrylamide prepared by simultaneous formation method was the best. When the content of water glass and acrylamide(AM) were respectively 3% and 15% , reaction temperature was 60?C and reaction time was 3h, the performance of product was the best. The water content in filter cake was 24.32% after the waste drilling mud disposed by the optimization flocculant. The flocculent effect of optimization flocculant was superior to that of other flocculant in market. 展开更多
关键词 In-Situ DISPERSION METHOD Direct DISPERSION METHOD Simultaneous Formation METHOD Nano-Modified POLYACRYLAMIDE High Density waste drilling MUD
下载PDF
Treating Drilling Waste Water by Recharging to Waste Well
16
作者 Wang Yanming and Zhou Xiangyu(Environmental Monitoring Center,CNPC) 《China Oil & Gas》 CAS 1999年第1期48-49,共2页
关键词 Treating drilling waste Water by Recharging to waste Well
下载PDF
Innocuous Processing of Waste Drilling Mud
17
《China Oil & Gas》 CAS 1997年第4期216-216,共1页
关键词 Innocuous Processing of waste drilling Mud
下载PDF
Preparation and Performance of the Hyperbranched Polyamine as an Effective Shale Inhibitor for Water-Based Drilling Fluid
18
作者 Yuan Liu Xiao Luo +3 位作者 Jianbo Wang Zhiqi Zhou Yue Luo Yang Bai 《Open Journal of Yangtze Oil and Gas》 2021年第4期161-174,共14页
Seeking effective solutions to control and mitigate the interaction between drilling fluids and clay formations has been a challenge for many years, and various shale inhibitors have shown excellent results in problem... Seeking effective solutions to control and mitigate the interaction between drilling fluids and clay formations has been a challenge for many years, and various shale inhibitors have shown excellent results in problematic shale formations around the world. Herein, the hyperbranched polyamine (HBPA) inhibitor with a higher ratio of amine groups and obvious tendentiousness in protonation was successfully synthesized from ethylenediamine, acryloyl chloride and aziridine by five steps, in which the metal-organic framework (MOF) was employed as a catalyst for ring-open polycondensation (ROP). The structure and purity were confirmed by nuclear magnetic resonance hydrogen spectroscopy and high-performance liquid chromatography (HPLC) respectively. The HBPA displays more excellent performance than EDA and KCl widely applied in the oil field. After aging at 80°C and 180°C, the YP of a slurry system containing 25 wt.% bentonite and 2 wt.% HBPA are just 8.5 Pa and 5.5 Pa (wt.%: percentage of mass), respectively. The swelling lengths of 2 wt.% HBPA are estimated to be 1.78 mm, which falls by 70% compared with that of freshwater. Under a hot rolling aging temperature of 180°C, the HBPA system demonstrates a significant inhibition with more than 85% shale cuttings recovery rate and is superior to conventional EDA and KCl. Mechanism analysis further validates that the HBPA can help to increase the zeta potential. 展开更多
关键词 water-based drilling Fluid INHIBITORS Hyperbranched Polyamine Metal Organic Framework Catalyst Amine Groups
下载PDF
Solidification and utilization of water-based drill cuttings to prepare ceramsite proppant with low-density and high performance 被引量:2
19
作者 Hang Yang Yun-Li Liu +3 位作者 Guo-Liang Bai Zhen Feng Yi Zhang Shi-Bin Xia 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2314-2325,共12页
Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping... Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping with iron oxide,and acid modification of WBDC on the properties of proppants are discussed.The proppant performance is evaluated according to the national standard SY/T5108-2014.The morphology of the proppant is analyzed using scanning electron microscopy(SEM).The crystal phase structure of the proppant is studied using X-ray diffraction(XRD).Thermal analysis of the proppant sintering process is performed using thermogravimetry(TG).Proppant Z-23 completely satisfied the SY/T5108-2014 standard.This study provides a new perspective for the resource utilization of water-based drill cuttings and preparation of low-density proppants. 展开更多
关键词 water-based drill cuttings PROPPANT Thermal analysis Solid waste
下载PDF
A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid
20
作者 HUANG Xianbin SUN Jinsheng +3 位作者 LYU Kaihe DONG Xiaodong LIU Fengbao GAO Chongyang 《Petroleum Exploration and Development》 SCIE 2023年第5期1215-1224,共10页
Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-pluggi... Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-plugging agent(FPM)and comb-structure polymeric lubricant(CSP).A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid was developed for deep drilling.The WCZ has a good anti-polyelectrolyte effect and exhibits the API fluid loss less than 8 mL after aging in saturated salt environment at 200°C.The FPM can reduce the fluid loss by improving the quality of the mud cake and has a good plugging effect on nano-scale pores/fractures.The CSP,with a weight average molecular weight of 4804,has multiple polar adsorption sites and exhibits excellent lubricating performance under high temperature and high salt conditions.The developed drilling fluid system with a density of 2.0 g/cm^(3)has good rheological properties.It shows a fluid loss less than 15 mL at 200°C and high pressure,a sedimentation factor(SF)smaller than 0.52 after standing at high temperature for 5 d,and a rolling recovery of hydratable drill cuttings similar to oil-based drilling fluid.Besides,it has good plugging and lubricating performance. 展开更多
关键词 deep drilling saturated brine-based drilling fluid high-temperature resistant additive water-based drilling fluid rheological property plugging performance lubricating performance
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部