The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic sprayin...The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic spraying(NCES)can enhance the performance of MQL more comprehensively.However,it is largely influenced by the base fluid of external fluid.In this paper,the lubrication property and machining performance of NCES with different types of vegetable oils(castor,palm,soybean,rapeseed,and LB2000 oil)as the base fluids of external fluid were compared and evaluated by friction and milling tests under different flow ratios of external and internal fluids.The spraying current and electrowetting angle were tested to analyze the influence of vegetable oil type as the base fluid of external fluid on NCES performances.The friction test results show that relative to NCES with other vegetable oils as the base fluids of external fluid,NCES with LB2000 as the base fluid of external fluid reduced the friction coefficient and wear loss by 9.4%-27.7%and 7.6%-26.5%,respectively.The milling test results display that the milling force and milling temperature for NCES with LB2000 as the base fluid of external fluid were 1.4%-13.2%and 3.6%-11.2%lower than those for NCES with other vegetable oils as the base fluids of external fluid,respectively.When LB2000/multi-walled carbon nanotube(MWCNT)water-based nanofluid was used as the external/internal fluid and the flow ratio of external and internal fluids was 2:1,NCES showed the best milling performance.This study provides theoretical and technical support for the selection of the base fluid of NCES external fluid.展开更多
The experimental and simulated investigations on electrostatic spraying with twin capillaries are carried out. The starting electric voltage required for the cone-jet and the deposition characteristics of the droplets...The experimental and simulated investigations on electrostatic spraying with twin capillaries are carried out. The starting electric voltage required for the cone-jet and the deposition characteristics of the droplets are measured.The whole spraying process, which includes jet and droplet motions, is simulated and the simulated results on the motions of jet and droplet are basically consistent with the experiments. According to the simulated results,the contributions of various electric forces to droplet movement are quantitatively analyzed and the droplet dynamic characteristics, especially the interaction mechanism between two sprays, are revealed. The test results on the droplet deposition characteristics partially support the simulated results on the droplet motion. The present work is useful for a better understanding on the interaction between sprays in double or multi-capillary system.展开更多
Electric fields induced by ring and pin electrodes in electrostatic charged powder sprayingtechnique are analysed. The fundamental formulae to deseribe these fields have been built up. Theseformulae could be used to d...Electric fields induced by ring and pin electrodes in electrostatic charged powder sprayingtechnique are analysed. The fundamental formulae to deseribe these fields have been built up. Theseformulae could be used to design electrostatic charged podwer spraying system. The chargingeffectiveness of ring and pin electrode is experimentally investigated and compared each other. Theperformance of ring electrode is better than that of pin electrode.展开更多
In the present study,electrostatic atomization(EA)behavior of several test liquids having much higher viscosities(1 400 mPa·s)than have previously been studied was investigated by spraying at a series of applied ...In the present study,electrostatic atomization(EA)behavior of several test liquids having much higher viscosities(1 400 mPa·s)than have previously been studied was investigated by spraying at a series of applied voltages and flow rates.The results showed that to obtain stable cone-jet mode spraying and hence gain better monodispersity of droplets,electrical conductivity,viscosity and surface tension of the liquid are important controlling factors.The stable cone-jet mode could be easily established for liquids having shear viscosities in the range from 80 to 1 400 mPa·s and surface tensions below 65 mN·m-1.In contrast,methylcellulose aqueous solutions with shear viscosities ranging from 10 to 540 mPa·s and moderate surface tensions(50~56 mN·m-1)generated more complicated spraying modes.However,fine TiO2 powder(a few micrometers in size)could be prepared using the EA method from its precursor solutions.展开更多
In order to deal with the hard machining of TC4 alloy,coated graphite on grinding wheel surface by electrostatic device is proposed in this paper.This paper mainly completed the design of graphite electrostatic sprayi...In order to deal with the hard machining of TC4 alloy,coated graphite on grinding wheel surface by electrostatic device is proposed in this paper.This paper mainly completed the design of graphite electrostatic spraying grinding wheel device,force experimental analysis of grinding TC4 alloy with coated graphite grinding wheel,and summary of the influence of different grinding speeds and grinding depths on grinding force and grinding force ratio.The experimental results show that the lubrication coating can reduce the grinding force and grinding force ratio in the process of grinding TC4 alloy with graphite powder-coated wheel under electrostatic field force,compared to dry grinding with the uncoated wheel.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52175411 and 51205177)Jiangsu Provincial Natural Science Foundation(Grant Nos.BK20171307 and BK2012277).
文摘The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic spraying(NCES)can enhance the performance of MQL more comprehensively.However,it is largely influenced by the base fluid of external fluid.In this paper,the lubrication property and machining performance of NCES with different types of vegetable oils(castor,palm,soybean,rapeseed,and LB2000 oil)as the base fluids of external fluid were compared and evaluated by friction and milling tests under different flow ratios of external and internal fluids.The spraying current and electrowetting angle were tested to analyze the influence of vegetable oil type as the base fluid of external fluid on NCES performances.The friction test results show that relative to NCES with other vegetable oils as the base fluids of external fluid,NCES with LB2000 as the base fluid of external fluid reduced the friction coefficient and wear loss by 9.4%-27.7%and 7.6%-26.5%,respectively.The milling test results display that the milling force and milling temperature for NCES with LB2000 as the base fluid of external fluid were 1.4%-13.2%and 3.6%-11.2%lower than those for NCES with other vegetable oils as the base fluids of external fluid,respectively.When LB2000/multi-walled carbon nanotube(MWCNT)water-based nanofluid was used as the external/internal fluid and the flow ratio of external and internal fluids was 2:1,NCES showed the best milling performance.This study provides theoretical and technical support for the selection of the base fluid of NCES external fluid.
基金Supported by the Science and Technology Project of Fujian Province(2017H0024)the Fujian Provincial Department of Education research project(JK2012027),China
文摘The experimental and simulated investigations on electrostatic spraying with twin capillaries are carried out. The starting electric voltage required for the cone-jet and the deposition characteristics of the droplets are measured.The whole spraying process, which includes jet and droplet motions, is simulated and the simulated results on the motions of jet and droplet are basically consistent with the experiments. According to the simulated results,the contributions of various electric forces to droplet movement are quantitatively analyzed and the droplet dynamic characteristics, especially the interaction mechanism between two sprays, are revealed. The test results on the droplet deposition characteristics partially support the simulated results on the droplet motion. The present work is useful for a better understanding on the interaction between sprays in double or multi-capillary system.
文摘Electric fields induced by ring and pin electrodes in electrostatic charged powder sprayingtechnique are analysed. The fundamental formulae to deseribe these fields have been built up. Theseformulae could be used to design electrostatic charged podwer spraying system. The chargingeffectiveness of ring and pin electrode is experimentally investigated and compared each other. Theperformance of ring electrode is better than that of pin electrode.
文摘In the present study,electrostatic atomization(EA)behavior of several test liquids having much higher viscosities(1 400 mPa·s)than have previously been studied was investigated by spraying at a series of applied voltages and flow rates.The results showed that to obtain stable cone-jet mode spraying and hence gain better monodispersity of droplets,electrical conductivity,viscosity and surface tension of the liquid are important controlling factors.The stable cone-jet mode could be easily established for liquids having shear viscosities in the range from 80 to 1 400 mPa·s and surface tensions below 65 mN·m-1.In contrast,methylcellulose aqueous solutions with shear viscosities ranging from 10 to 540 mPa·s and moderate surface tensions(50~56 mN·m-1)generated more complicated spraying modes.However,fine TiO2 powder(a few micrometers in size)could be prepared using the EA method from its precursor solutions.
基金National Natural Science Foundation of China(No.51305301)Tianjin Research Program of Application Foundation and Advanced Technology,China(No.14JCQNJC05100)。
文摘In order to deal with the hard machining of TC4 alloy,coated graphite on grinding wheel surface by electrostatic device is proposed in this paper.This paper mainly completed the design of graphite electrostatic spraying grinding wheel device,force experimental analysis of grinding TC4 alloy with coated graphite grinding wheel,and summary of the influence of different grinding speeds and grinding depths on grinding force and grinding force ratio.The experimental results show that the lubrication coating can reduce the grinding force and grinding force ratio in the process of grinding TC4 alloy with graphite powder-coated wheel under electrostatic field force,compared to dry grinding with the uncoated wheel.