The effectiveness of locally available okra pod powder as natural coagulant under varying pH, dosage and settling time in the removal of turbidity from paint waste water at room temperature has been evaluated. The app...The effectiveness of locally available okra pod powder as natural coagulant under varying pH, dosage and settling time in the removal of turbidity from paint waste water at room temperature has been evaluated. The application of single angle Turbidimeter measurement was employed for the experiment. Such kinetic and functional parameter as coagulation rate constant (K), and coagulation period (τ1/2) , were determined. Statistical parameters such as coefficient of determination (R2), sum of squares due to error (SSE), and the root mean square error (RMSE), were used to evaluate the adequacy of the process. The highest value of 1.7×10﹣4L/mg.min for K is recorded at pH 4 and 100 mg/L dosage with?τ1/2 of 14.91 min and the least value of K, 3.6×10﹣5L/mg.min is recorded at pH 8 and 300 mg/L doses with τ1/2 of 70.43 min respectively. The efficiency of turbidity removal of more than 80% and 95% was achieved at the end of 3 mins and 30 mins settling time respectively, indicating a system controlled by perikinetic method of coag-flocculation. The results exhibited the potential of pulverized okra pod for removal of suspended particle from paint wastewater.展开更多
Reactive acrylate microgels with different reactive groups such as carboxyl, hydroxide groups had excellent properties such as quick-dry, low viscosity, high adhesion and hardness, which made them extensively used in ...Reactive acrylate microgels with different reactive groups such as carboxyl, hydroxide groups had excellent properties such as quick-dry, low viscosity, high adhesion and hardness, which made them extensively used in preparing paints or in coating-modification. Reactive acrylate microgels were prepared by emulsion co-polymerization with zwitterions surfactant, anionic surfactant and nonionic surfactant as co-emulsifier. The water-base baking paints made from reactive acrylate microgels and melamine-formaldehyde resin had excellent combination properties. The aluminium powder can be well-dispersed in the paints. The influences of monomer components on the properties of the water-base baking paints were discussed in this paper. And the baking paints were also compared with the marketing solvent acrylate baking paints. It was found that the water-base acrylate amino baking paints had better combination properties than the organic solvent acrylate baking paints, which means that the water-base baking paints had a bright marketing future.展开更多
An efficient photo-Fenton catalyst(Fe S_(2)@HTCN)was designed by maximizing the synergistic effect of Fe S_(2)nanoparticles and hollow tubular g-C_(3)N_(4)(HTCN).Molecule self-assembly and molten salts-assisted calcin...An efficient photo-Fenton catalyst(Fe S_(2)@HTCN)was designed by maximizing the synergistic effect of Fe S_(2)nanoparticles and hollow tubular g-C_(3)N_(4)(HTCN).Molecule self-assembly and molten salts-assisted calcination were used to engineering the hollow structured g-C_(3)N_(4)before anchoring Fe S_(2)nanoparticles on the walls of HTCN via reflux method.Compared to bulk g-C_(3)N_(4),the unique structure of HTCN and heterojunction in the composite endowed FeS_(2)@HTCN with more active sites and abundant channels for electron transfer and charge separation.The enriched electrons can improve the Fe^(3+) recycling and boost Fe^(2+) catalyzed ^(·)OH production via H_(2)O_(2).As-prepared photo-Fenton catalyst was successfully applied to the treatment of industrial paint wastewater.The paint wastewater with its COD as high as 8200 mg/L can be effectively degraded with 0.2 mol/L H_(2)O_(2)in 90 min under visible light irradiation.The photoFenton system was further evaluated according to the process stability and economic benefit,proving that the strategy presented in this work would be applicable to the treatment of real wastewater.展开更多
文摘The effectiveness of locally available okra pod powder as natural coagulant under varying pH, dosage and settling time in the removal of turbidity from paint waste water at room temperature has been evaluated. The application of single angle Turbidimeter measurement was employed for the experiment. Such kinetic and functional parameter as coagulation rate constant (K), and coagulation period (τ1/2) , were determined. Statistical parameters such as coefficient of determination (R2), sum of squares due to error (SSE), and the root mean square error (RMSE), were used to evaluate the adequacy of the process. The highest value of 1.7×10﹣4L/mg.min for K is recorded at pH 4 and 100 mg/L dosage with?τ1/2 of 14.91 min and the least value of K, 3.6×10﹣5L/mg.min is recorded at pH 8 and 300 mg/L doses with τ1/2 of 70.43 min respectively. The efficiency of turbidity removal of more than 80% and 95% was achieved at the end of 3 mins and 30 mins settling time respectively, indicating a system controlled by perikinetic method of coag-flocculation. The results exhibited the potential of pulverized okra pod for removal of suspended particle from paint wastewater.
基金supported by the Science Foundation of Shanghai Municipal Education Commission (Grant No.03AK59)
文摘Reactive acrylate microgels with different reactive groups such as carboxyl, hydroxide groups had excellent properties such as quick-dry, low viscosity, high adhesion and hardness, which made them extensively used in preparing paints or in coating-modification. Reactive acrylate microgels were prepared by emulsion co-polymerization with zwitterions surfactant, anionic surfactant and nonionic surfactant as co-emulsifier. The water-base baking paints made from reactive acrylate microgels and melamine-formaldehyde resin had excellent combination properties. The aluminium powder can be well-dispersed in the paints. The influences of monomer components on the properties of the water-base baking paints were discussed in this paper. And the baking paints were also compared with the marketing solvent acrylate baking paints. It was found that the water-base acrylate amino baking paints had better combination properties than the organic solvent acrylate baking paints, which means that the water-base baking paints had a bright marketing future.
基金the Natural National Science Foundation of China(No.51973083)National First-Class Discipline Program of Food Science and Technology(No.JUFSTR20180301)+1 种基金China Postdoctoral Science Foundation(No.2019M651688)Fundamental Research Funds for the Central Universities(No.JUSRP22027)。
文摘An efficient photo-Fenton catalyst(Fe S_(2)@HTCN)was designed by maximizing the synergistic effect of Fe S_(2)nanoparticles and hollow tubular g-C_(3)N_(4)(HTCN).Molecule self-assembly and molten salts-assisted calcination were used to engineering the hollow structured g-C_(3)N_(4)before anchoring Fe S_(2)nanoparticles on the walls of HTCN via reflux method.Compared to bulk g-C_(3)N_(4),the unique structure of HTCN and heterojunction in the composite endowed FeS_(2)@HTCN with more active sites and abundant channels for electron transfer and charge separation.The enriched electrons can improve the Fe^(3+) recycling and boost Fe^(2+) catalyzed ^(·)OH production via H_(2)O_(2).As-prepared photo-Fenton catalyst was successfully applied to the treatment of industrial paint wastewater.The paint wastewater with its COD as high as 8200 mg/L can be effectively degraded with 0.2 mol/L H_(2)O_(2)in 90 min under visible light irradiation.The photoFenton system was further evaluated according to the process stability and economic benefit,proving that the strategy presented in this work would be applicable to the treatment of real wastewater.