Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th...Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.展开更多
The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and ...The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.展开更多
Due to its ability to cause illnesses and discomfort even at low concentrations, formaldehyde pollution of indoor air poses a significant risk to human health. Sources of formaldehyde in indoor environments include te...Due to its ability to cause illnesses and discomfort even at low concentrations, formaldehyde pollution of indoor air poses a significant risk to human health. Sources of formaldehyde in indoor environments include textiles, paints, wallpapers, glues, adhesives, varnishes, and lacquers;furniture and wooden products like particleboard, plywood, and medium-density fiberboard that contain formaldehyde-based resins;shoe products;cosmetics;electronic devices;and other consumer goods like paper products and insecticides. According to the World Health Organisation, indoor formaldehyde concentrations shouldn’t exceed 0.1 mg/m<sup>3</sup>. The methods include membrane separation, plasma, photocatalytic decomposition, physisorption, chemisorption, biological and botanical filtration, and catalytic oxidation. Materials based on metal oxides and supported noble metals work as oxidation catalysts. Consequently, a paint that passively eliminates aldehydes from buildings can be developed by adding absorbents and formaldehyde scavengers to the latex composition. It will be crucial to develop techniques for the careful detection and removal of formaldehyde in the future. Additionally, microbial decomposition is less expensive and produces fewer pollutants. The main goal of future research will be to develop a biological air quality control system that will boost the effectiveness of formaldehyde elimination. The various methods of removing formaldehyde through paints have been reviewed here, including the use of mixed metal oxides, formaldehyde-absorbing emulsions, nano titanium dioxide, catalytic oxidation, and aromatic formaldehyde abating materials that can improve indoor air quality.展开更多
Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite i...Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite in the drilling fluid and cause the coalescence of bentonite particles.As a result,the particles coalesce,the grid structure is destroyed,and the rheological properties,rock-carrying capacity and filtration properties are lost.To resolve the foregoing,in this study,0.05-wt%carbon nanotubes are introduced into a 4%bentonite drilling fluid under conditions where the temperature and concentration of added Na Cl reach 180°C and 10 wt%,respectively.The carbon nanotubes adsorb on the bentonite surface and increase the space among bentonite particles.The steric hindrance prevents the coalescence of bentonite in high temperature and high salt environment.Thus bentonite maintains the small size distribution of bentonite and supports the bentonite grid structure in the drilling fluid.As a result,the rock-carrying capacity of the drilling fluid increases by 85.1%.Moreover,the mud cake formed by the accumulation of small-sized bentonite particles is dense;consequently,the filtration of bentonite drilling fluid reduced by 30.2%.展开更多
The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systemat...The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systematically studied for the first time.The inhibition performance of NS was evaluated via inhibition evaluation tests,including mud ball immersion tests,linear expansion tests,shale rolling recovery tests,and compressive strength tests.The inhibition mechanism of NS was analyzed using Fourier transform infrared spectroscopy(FTIR),contact angle measurements,particle size distribution determination,thermogravimetric analysis(TGA),and scanning electron microscopy(SEM).The experimental results demonstrate that NS is able to adhere to the clay surface,forming a hydrophobic film that prevents the entry of water molecules and inhibiting the hydration dispersion of the clay.Because of this,NS can maintain the original state of bentonite pellets in water,which can effectively reduce the swelling rate of bentonite,increase the recovery rate of shale drill cuttings,maintain the strength of the shale,and therefore maintain the stability of the borehole wall during drilling.In addition,NS is non-toxic,degradable,and compatible with water-based drilling fluids.The above advantages make NS a promising candidate for use as an environmentally friendly shale inhibitor.展开更多
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines...To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site.展开更多
An optimal test method for paint is proposed; additionally, the Field and Laboratory Emission Cell (FLEC) method used in Europe is applied as a substitute for the 20 L small chamber method. The emission factors of t...An optimal test method for paint is proposed; additionally, the Field and Laboratory Emission Cell (FLEC) method used in Europe is applied as a substitute for the 20 L small chamber method. The emission factors of total volatile organic compounds (TVOC) and formaldehyde from oil-based paint, emulsion paint, and water-dispersion paint with a coating weight of 300 g/m2, cured for 24/48 hours, were measured using the 20 L small chamber method. The emission rate of TVOC and formaldehyde from all paints began to stabilize after approximately 7 days after 24/48 hours of curing even though Korean standards stipulate that paint should be measured and analyzed after the third day of application. The emission factor of TVOC and formaldehyde from oil-based, emulsion, and water-dispersion paints were also measured using the FLEC method. There was good correlation between the 20 L small chamber method and the FLEC method for oil-based, emulsion, and water-dispersion paint emissions. With the FLEC method, using paints prepared under identical conditions, the emission rate was stable 24 hours after installation of samples because the air flow rate of FLEC is much higher than that of a 20 L small chamber, and the relative cell volume of FLEC is much smaller than that of a 20 L small chamber.展开更多
Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping...Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping with iron oxide,and acid modification of WBDC on the properties of proppants are discussed.The proppant performance is evaluated according to the national standard SY/T5108-2014.The morphology of the proppant is analyzed using scanning electron microscopy(SEM).The crystal phase structure of the proppant is studied using X-ray diffraction(XRD).Thermal analysis of the proppant sintering process is performed using thermogravimetry(TG).Proppant Z-23 completely satisfied the SY/T5108-2014 standard.This study provides a new perspective for the resource utilization of water-based drill cuttings and preparation of low-density proppants.展开更多
Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-bas...Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-based drilling fluids.The chemical composition,water absorbency,rheological properties of aqueous suspension of BSP were tested.The effect of BSP on the rheological and filtration of bentonitebased drilling fluid before and after thermal aging was investigated.The inhibition characteristics were evaluated by linear swelling,shale cuttings dispersion and shale immersion test.Lubricity improvement by BSP was measured with extreme pressure lubricity test.The results revealed that incorporation of BSP into bentonite suspension improved rheological and filtration properties effectively after thermal aging of 120℃.BSP exhibited superior inhibitive capacity to xanthan and synergistic effect with KCl.BSP could reduce friction by forming hydration layer.The nanoscale three-dimensional network structures enable BSP to maintain high water retention and absorb strongly on bentonite and metal surface,contributing to enhanced rheology,filtration,inhibition and lubrication properties.The versatile characteristic of BSP,as well as biodegradation makes it a promising additive using in high performance water-based drilling fluid and a potential alternative to conventional synthetic polymers.展开更多
Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of...Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs.展开更多
Mud shale hydration and swelling are major challenges in the development of water-based drilling fuids(WBDFs).In this work,the inhibition performance and inhibition mechanism of polyethylene glycol(PEG)and potassium c...Mud shale hydration and swelling are major challenges in the development of water-based drilling fuids(WBDFs).In this work,the inhibition performance and inhibition mechanism of polyethylene glycol(PEG)and potassium chloride(KCl)were investigated by hot rolling recovery tests,linear swell tests,Fourier transform infrared spectroscopy,X-ray difraction,atomic absorption spectrophotometry and X-ray photoelectron spectroscopy.The experimental results show that the combination of PEG and KCl achieved higher recovery and lower linear swelling rate than those obtained by individual PEG or KCl.Compared to the d-spacing of Na-montmorillonite(Na-Mt)with PEG or KCl,the d-spacing of Na-Mt with PEG+KCl was lower,which indicates that KCl and PEG have synergistic inhibition efect.This synergistic efect can replace sodium ions and water molecules from the interlayer space of Na-Mt and decrease the d-spacing of Na-Mt.Based on the above experimental results and analysis,a method for optimizing PEG and KCl concentrations was proposed and further verifed by rheological and hot rolling recovery tests of WBDFs.Hence,the results of this work can provide valuable theoretical guidance for developing other synergistic inhibitors.展开更多
Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drillin...Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drilling fluids(OBDFs).However,few of these drilling fluids are entirely composed of natural materials,which makes it difficult to achieve real environmental protection.Using laponite nanoparticles and various derivatives of natu ral mate rials,including cro sslinked starch,cellulose composite,gelatin ammonium salt,poly-l-arginine,and polyanionic cellulose,a kind of environmentally friendly water-based drilling fluid(EF-WBDF)was built for drilling in environment-sensitive areas.The properties of this EF-WBDF were evaluated by thermal stability tests on rheology,filtration,inhibition,and salt contamination.Besides,biological toxicity,biodegradability,heavy mental content and wheat cultivation tests were conducted to investigate the environmental factor of EF-WBDF.Results showed that EF-WBDF displayed satisfactory thermal resistance up to 150℃,and the rheological properties did not suffer significant fluctuation,showing potential application in high-temperature wells.The optimal rheological model of EF-WBDF was Herschel-Bulkley model.This EF-WBDF performed an eligible filtration of 14.2 mL at 150℃and a differential pressure of 3.5 MPa.This fluid could still maintain colloidal stability after being contaminated by 7.5%NaCl or 0.5%CaC1_(2).Meanwhile,rather low clay swelling degree of 2.44 mm and high shale recovery of more than 95%ensured the inhibitive capability of EF-WBDF.Furthermore,EF-WBDF presented a half maximal effective concentration(EC_(50))of51200 mg/L and a BOD/COD ratio of 47.55%,suggesting that EF-WBDF was non-toxic and easily biodegradable.The wheat cultivated in EF-WBDF could grow healthily,beneficial for reducing the adverse impact on ecological environment.The formed EF-WBDF has a promising future for drilling in environment-sensitive and high-temperature areas.展开更多
Regulating rheological properties of water-based drilling fluids has always been a hot topic.This paper proposed a new method for regulating rheological properties of water-based drilling fluids by ultrasonic field.Th...Regulating rheological properties of water-based drilling fluids has always been a hot topic.This paper proposed a new method for regulating rheological properties of water-based drilling fluids by ultrasonic field.The experimental results showed that the ultrasound increased the viscosity and yield point of bentonite suspension by reducing the particle size of clay,destroying the network structure between clay particles,increasing the mud yield and the cation exchange capacity of bentonite,and promoting the hydration dispersion of bentonite.The change of rheological property showed a memory effect at room temperature and high temperature.Besides,the ultrasonic energy affected the network structure between clays and polymer chains,thus regulating the rheological properties of the bentonite-polymer system.For two types of drilling fluids investigated,the rheology of the poly-sulfonate drilling fluid was regulated by damaging the grid structure between additives and clays by low-power ultrasound and reducing the clay particle size by high-power ultrasound,while the rheology of the deep-water drilling fluid was mainly regulated by disentangling the spatial grid structure between additives.Additionally,ultrasound showed no effect on the lubricity,inhibition and stability of drilling fluids,which proved the feasibility of ultrasound to regulate rheological properties of water-based drilling fluids.展开更多
A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in...A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in waterborne media.TEM,FTIR,XPS,and EDX determination showed that PAA and SiO2 were coated on the surface of aluminum.Evolved hydrogen detection showed that the corrosion resistance of composite particle had been markedly improved.Maximum corrosion inhibition efficiency of SiO2 coated aluminum(SiO2@Al)was 95.1% while that of double-layer coated aluminum(PAA/SiO2@Al)was 98.8%.Meanwhile,polyacrylic acid layer improved the agglomeration of aluminum significantly.According to the dispersibility test,the particle size of 50% volume fraction [d(0.5)] of aluminum,SiO2@Aland PAA/SiO2@Alwere 42,53,and 34 μm,respectively.展开更多
This study presents a simple numerical method that can be used to evaluate the hydrodynamic performances of antifouling paints.Steady Reynolds-averaged Navier-Stokes equations were solved through a finite volume techn...This study presents a simple numerical method that can be used to evaluate the hydrodynamic performances of antifouling paints.Steady Reynolds-averaged Navier-Stokes equations were solved through a finite volume technique,whereas roughness was modeled with experimentally determined roughness functions.First,the methodology was validated with previous experimental studies with a flat plate.Second,flow around the Kriso Container Ship was examined.Lastly,full-scale results were predicted using Granville’s similarity law.Results indicated that roughness has a similar effect on the viscous pressure resistance and frictional resistance around a Reynolds number of 10^7.Moreover,the increase in frictional resistance due to roughness was calculated to be approximately 3%-5%at the ship scale depending on the paint.展开更多
Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free...Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free energy, prevent collapse, protect reservoir, lubricate and increase drilling speed. With this super-amphiphobic agent as the core agent, a super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid system has been developed by combining with other agents based on drilled formation, and compared with high-performance water-based drilling fluid and typical oil based drilling fluid commonly used in oilfields. The results show that the super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid has better rheology, and high temperature and high pressure filtration similar with that of oil-based drilling fluid, inhibiting and lubricating properties close to oil based drilling fluid. Besides, the super-amphiphobic system is non-toxic, safe and environmentally friendly. Field tests show this newly developed drilling fluid system can prevent wellbore collapse, reservoir damage and pipe-sticking, increase drilling speed and lower drilling cost, meeting the requirement of safe, high efficient, economic and environmentally friendly drilling. Compared with other drilling fluids, this new drilling fluid system can reduce downhole complexities by 82.9%, enhance the drilling speed by about 18.5%, lower drilling fluid cost by 39.3%, and increase the daily oil output by more than 1.5 times in the same block.展开更多
The performance of local clay-titanium dioxide core-shell extender pigments in alkyd paints has been studied. The physico-mechanical properties of the prepared alkyd paints were evaluated according to ASTM measurement...The performance of local clay-titanium dioxide core-shell extender pigments in alkyd paints has been studied. The physico-mechanical properties of the prepared alkyd paints were evaluated according to ASTM measurements. The effects of various environmental and corrosive factors on the paints were also studied. The study showed that the alkyd paint samples formulated using the core-shell pigments generally had low specific gravity (1.30 – 1.38), an indication that more of the core-shell pigments can be incorporated into the alkyd paints with considerable cost savings. The dry film thicknesses of the paint samples falls within 0.24 - 0.39 mm, suggesting that the samples will perform well as anticorrosive coatings and their adhesion properties are generally good, showing that they can withstand abrasive and corrosive agents. The core-shell extender pigments formulated paint samples were observed to exhibit the best dust-free, tack-free, and through dry times compared to TiO<sub>2</sub> paint formulation. The formulated paint samples generally performed well on exposure to rain and sunlight as well as in distilled water, 2% Na<sub>2</sub>CO<sub>3</sub>, and 2% H<sub>2</sub>SO<sub>4</sub> with only TiO<sub>2</sub> paint formulation exhibiting rust. The good paint performance characteristics obtainable with the core-shell extender pigments are enough evidence to justify their utilization in the surface coatings industry. The performances of these core-shell extender pigments in alkyd paints have shown that they combine the properties of both the clays and titanium dioxide, and have the potential to overcome their disadvantages.展开更多
Toxic substances released as a result of leaching from painted surfaces to the aquatic environment affect both fouling organisms and “non-target” biota. Artemia fransiscana nauplii have been considered a useful test...Toxic substances released as a result of leaching from painted surfaces to the aquatic environment affect both fouling organisms and “non-target” biota. Artemia fransiscana nauplii have been considered a useful test system for the examination of toxicity for antifouling paints. In this study, we examined the effect of four “tin free” self-polishing copolymer (SPC) antifouling paints on the larval development of Artemia nauplii. Based on the L(S/V)50 values the order of toxicity of the antifouling paints was: ANTI F > SHARKSKIN > OCEAN T/F > MICRON. Furthermore, the body size of Artemia nauplii was significantly affected at lethal and above lethal L(S/V)5024h values. The body size of 48 h-aged nauplii exposed for the last 24 hours to each of the four SPC antifouling paints was significantly lower than that of the 48 h-aged controls (0.88 ± 0.030 mm). In addition, the body size of 72 h-aged nauplii maintained for the last 24 hours to pure synthetic seawater after exposure for 24 hours to each of the four SPC antifouling paints was significantly lower than that of the 72 h-aged controls (0.96 ±0.027 mm). Overall, the SPCs examined here were substantially toxic to Artemia nauplii, but with different toxicities and modes of action, as a result of the synergistic action of distinct components of the antifouling paints.展开更多
Novel water-based nanolubricants using TiO2 nanoparticles(NPs)were synthesised by adding sodium dodecyl benzene sulfonate(SDBS)and glycerol,which exhibited excellent dispersion stability and wettability.The tribologic...Novel water-based nanolubricants using TiO2 nanoparticles(NPs)were synthesised by adding sodium dodecyl benzene sulfonate(SDBS)and glycerol,which exhibited excellent dispersion stability and wettability.The tribological performance of the synthesised nanolubricants was investigated using an Rtec ball-on-disk tribometer,and their application in hot steel rolling was evaluated on a 2-high Hille 100 experimental rolling mill,in comparison to those without SDBS.The water-based nanolubricant containing 4 wt%TiO2 and 0.4 wt%SDBS demonstrated superior tribological performance by decreasing coefficient of friction and ball wear up to 70.5%and 84.3%,respectively,compared to those of pure water.In addition to the lubrication effect,the suspensions also had significant effect on polishing of the work roll surface.The resultant surface improvement thus enabled the decrease in rolling force up to 8.3%under a workpiece reduction of 30%at a rolling temperature of 850◦C.The lubrication mechanisms were primarily ascribed to the formation of lubricating film and ball-bearing effect of the TiO2 NPs.展开更多
The purpose of this paper is to make the environmental and occupational health community aware of a serious health risk associated with the common practice of burning industrial paint off of metal surfaces during or p...The purpose of this paper is to make the environmental and occupational health community aware of a serious health risk associated with the common practice of burning industrial paint off of metal surfaces during or prior to welding. On four occasions bystanders and welder/burner personnel have experienced illness as a result of being exposed to the combustion products of isocyanate paints that were being burned off metal surfaces. In each case, the burning and the exposed people were outside in an open environment where the health risk was thought to be minimal due to the open environment with nominal wind movement through the work area. In one case, the person (a burner) developed permanent sensitization to phthalic anhydride as a result of the exposure. Phthalic anhydride was determined to be decomposition product of burned isocyanate paint. In the other three cases (which involved very short exposures), between two and six people became ill but did not develop sensitization. Their symptoms included dizziness, nausea, headache, and breathing difficulty the severity of which varied from very uncomfortable to temporarily incapacitating. This paper discusses the circumstances associated with each event, the approach used to determine that phthalic anhydride was a decomposition product, and some practical things that can be done to avoid having employees become victims of exposure.展开更多
基金supported by the Preparation and Characterization of Fogging Agents,Cooperative Project of China(Grant No.1900030040)Preparation and Test of Fogging Agents,Cooperative Project of China(Grant No.2200030085)。
文摘Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.
基金supported by the National Natural Science Foundation of China (Grant No.51991361 and Grant No.51874329)。
文摘The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF.
文摘Due to its ability to cause illnesses and discomfort even at low concentrations, formaldehyde pollution of indoor air poses a significant risk to human health. Sources of formaldehyde in indoor environments include textiles, paints, wallpapers, glues, adhesives, varnishes, and lacquers;furniture and wooden products like particleboard, plywood, and medium-density fiberboard that contain formaldehyde-based resins;shoe products;cosmetics;electronic devices;and other consumer goods like paper products and insecticides. According to the World Health Organisation, indoor formaldehyde concentrations shouldn’t exceed 0.1 mg/m<sup>3</sup>. The methods include membrane separation, plasma, photocatalytic decomposition, physisorption, chemisorption, biological and botanical filtration, and catalytic oxidation. Materials based on metal oxides and supported noble metals work as oxidation catalysts. Consequently, a paint that passively eliminates aldehydes from buildings can be developed by adding absorbents and formaldehyde scavengers to the latex composition. It will be crucial to develop techniques for the careful detection and removal of formaldehyde in the future. Additionally, microbial decomposition is less expensive and produces fewer pollutants. The main goal of future research will be to develop a biological air quality control system that will boost the effectiveness of formaldehyde elimination. The various methods of removing formaldehyde through paints have been reviewed here, including the use of mixed metal oxides, formaldehyde-absorbing emulsions, nano titanium dioxide, catalytic oxidation, and aromatic formaldehyde abating materials that can improve indoor air quality.
基金financially supported by the Natural Science Foundation of China(Grants 51904328)the Natural Science Foundation of China(Grants U1762212)Fundamental Research Funds for the Central Universities(Grants 27R1702031A)
文摘Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite in the drilling fluid and cause the coalescence of bentonite particles.As a result,the particles coalesce,the grid structure is destroyed,and the rheological properties,rock-carrying capacity and filtration properties are lost.To resolve the foregoing,in this study,0.05-wt%carbon nanotubes are introduced into a 4%bentonite drilling fluid under conditions where the temperature and concentration of added Na Cl reach 180°C and 10 wt%,respectively.The carbon nanotubes adsorb on the bentonite surface and increase the space among bentonite particles.The steric hindrance prevents the coalescence of bentonite in high temperature and high salt environment.Thus bentonite maintains the small size distribution of bentonite and supports the bentonite grid structure in the drilling fluid.As a result,the rock-carrying capacity of the drilling fluid increases by 85.1%.Moreover,the mud cake formed by the accumulation of small-sized bentonite particles is dense;consequently,the filtration of bentonite drilling fluid reduced by 30.2%.
基金financially supported by the National Natural Science Foundation of China(Grants 51904328)the Natural Science Foundation of China(Grants 52074330)
文摘The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systematically studied for the first time.The inhibition performance of NS was evaluated via inhibition evaluation tests,including mud ball immersion tests,linear expansion tests,shale rolling recovery tests,and compressive strength tests.The inhibition mechanism of NS was analyzed using Fourier transform infrared spectroscopy(FTIR),contact angle measurements,particle size distribution determination,thermogravimetric analysis(TGA),and scanning electron microscopy(SEM).The experimental results demonstrate that NS is able to adhere to the clay surface,forming a hydrophobic film that prevents the entry of water molecules and inhibiting the hydration dispersion of the clay.Because of this,NS can maintain the original state of bentonite pellets in water,which can effectively reduce the swelling rate of bentonite,increase the recovery rate of shale drill cuttings,maintain the strength of the shale,and therefore maintain the stability of the borehole wall during drilling.In addition,NS is non-toxic,degradable,and compatible with water-based drilling fluids.The above advantages make NS a promising candidate for use as an environmentally friendly shale inhibitor.
文摘To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site.
基金Supported by the National Research Foundation of Korea (NRF) by the Korea Government (MEST) (No. 2011-0001031)
文摘An optimal test method for paint is proposed; additionally, the Field and Laboratory Emission Cell (FLEC) method used in Europe is applied as a substitute for the 20 L small chamber method. The emission factors of total volatile organic compounds (TVOC) and formaldehyde from oil-based paint, emulsion paint, and water-dispersion paint with a coating weight of 300 g/m2, cured for 24/48 hours, were measured using the 20 L small chamber method. The emission rate of TVOC and formaldehyde from all paints began to stabilize after approximately 7 days after 24/48 hours of curing even though Korean standards stipulate that paint should be measured and analyzed after the third day of application. The emission factor of TVOC and formaldehyde from oil-based, emulsion, and water-dispersion paints were also measured using the FLEC method. There was good correlation between the 20 L small chamber method and the FLEC method for oil-based, emulsion, and water-dispersion paint emissions. With the FLEC method, using paints prepared under identical conditions, the emission rate was stable 24 hours after installation of samples because the air flow rate of FLEC is much higher than that of a 20 L small chamber, and the relative cell volume of FLEC is much smaller than that of a 20 L small chamber.
基金funded by the Study on Comprehensive Control of Rocky Desertification and Ecological Service Function Improvement in Karst Peaks(No.2016YFC0502402)Fuling Shale Gas Environmental Exploration Technology of National Science and Technology Special Project(Grant No.2016ZX05060)+2 种基金financially supported by the National Natural Science Foundation of China(No.51709254)Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2020335)Key Research and Development Program of Hubei Province,China(No.2020BCA073)。
文摘Water-based drill cuttings(WBDC)and bauxite are used as raw materials to prepare proppants with low density and high performance.The effects of sintering temperature,sintering period,mixture ratios of materials,doping with iron oxide,and acid modification of WBDC on the properties of proppants are discussed.The proppant performance is evaluated according to the national standard SY/T5108-2014.The morphology of the proppant is analyzed using scanning electron microscopy(SEM).The crystal phase structure of the proppant is studied using X-ray diffraction(XRD).Thermal analysis of the proppant sintering process is performed using thermogravimetry(TG).Proppant Z-23 completely satisfied the SY/T5108-2014 standard.This study provides a new perspective for the resource utilization of water-based drill cuttings and preparation of low-density proppants.
基金financially supported by CNPC Innovation Foundation(2020D-5007-0310)National Natural Science Foundation of China(No.51974354)National Key Research and Development Project(2019YFA0708303)。
文摘Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-based drilling fluids.The chemical composition,water absorbency,rheological properties of aqueous suspension of BSP were tested.The effect of BSP on the rheological and filtration of bentonitebased drilling fluid before and after thermal aging was investigated.The inhibition characteristics were evaluated by linear swelling,shale cuttings dispersion and shale immersion test.Lubricity improvement by BSP was measured with extreme pressure lubricity test.The results revealed that incorporation of BSP into bentonite suspension improved rheological and filtration properties effectively after thermal aging of 120℃.BSP exhibited superior inhibitive capacity to xanthan and synergistic effect with KCl.BSP could reduce friction by forming hydration layer.The nanoscale three-dimensional network structures enable BSP to maintain high water retention and absorb strongly on bentonite and metal surface,contributing to enhanced rheology,filtration,inhibition and lubrication properties.The versatile characteristic of BSP,as well as biodegradation makes it a promising additive using in high performance water-based drilling fluid and a potential alternative to conventional synthetic polymers.
基金the National Natural Science Foundation of China(51904329,52174014)the Major Scientific and Technological Projects of CNPC(ZD 2019-183-005)Key R&D Program of Shandong Province(No.2020ZLYS07).
文摘Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs.
基金This work was financially supported by the Natural Science Foundation of China(51974270)Innovation Union of China National Petroleum Corporation and Southwest Petroleum University(2020CX040102,2020CX040201)Open Fund(PLN201814)of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University).
文摘Mud shale hydration and swelling are major challenges in the development of water-based drilling fuids(WBDFs).In this work,the inhibition performance and inhibition mechanism of polyethylene glycol(PEG)and potassium chloride(KCl)were investigated by hot rolling recovery tests,linear swell tests,Fourier transform infrared spectroscopy,X-ray difraction,atomic absorption spectrophotometry and X-ray photoelectron spectroscopy.The experimental results show that the combination of PEG and KCl achieved higher recovery and lower linear swelling rate than those obtained by individual PEG or KCl.Compared to the d-spacing of Na-montmorillonite(Na-Mt)with PEG or KCl,the d-spacing of Na-Mt with PEG+KCl was lower,which indicates that KCl and PEG have synergistic inhibition efect.This synergistic efect can replace sodium ions and water molecules from the interlayer space of Na-Mt and decrease the d-spacing of Na-Mt.Based on the above experimental results and analysis,a method for optimizing PEG and KCl concentrations was proposed and further verifed by rheological and hot rolling recovery tests of WBDFs.Hence,the results of this work can provide valuable theoretical guidance for developing other synergistic inhibitors.
基金support from CNPC Chuanqing Drilling Engineering Company Limited,Chinathe“academic pass”of Southwest Petroleum Universitythe China Postdoctoral Science Foundation(2022M712644)
文摘Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drilling fluids(OBDFs).However,few of these drilling fluids are entirely composed of natural materials,which makes it difficult to achieve real environmental protection.Using laponite nanoparticles and various derivatives of natu ral mate rials,including cro sslinked starch,cellulose composite,gelatin ammonium salt,poly-l-arginine,and polyanionic cellulose,a kind of environmentally friendly water-based drilling fluid(EF-WBDF)was built for drilling in environment-sensitive areas.The properties of this EF-WBDF were evaluated by thermal stability tests on rheology,filtration,inhibition,and salt contamination.Besides,biological toxicity,biodegradability,heavy mental content and wheat cultivation tests were conducted to investigate the environmental factor of EF-WBDF.Results showed that EF-WBDF displayed satisfactory thermal resistance up to 150℃,and the rheological properties did not suffer significant fluctuation,showing potential application in high-temperature wells.The optimal rheological model of EF-WBDF was Herschel-Bulkley model.This EF-WBDF performed an eligible filtration of 14.2 mL at 150℃and a differential pressure of 3.5 MPa.This fluid could still maintain colloidal stability after being contaminated by 7.5%NaCl or 0.5%CaC1_(2).Meanwhile,rather low clay swelling degree of 2.44 mm and high shale recovery of more than 95%ensured the inhibitive capability of EF-WBDF.Furthermore,EF-WBDF presented a half maximal effective concentration(EC_(50))of51200 mg/L and a BOD/COD ratio of 47.55%,suggesting that EF-WBDF was non-toxic and easily biodegradable.The wheat cultivated in EF-WBDF could grow healthily,beneficial for reducing the adverse impact on ecological environment.The formed EF-WBDF has a promising future for drilling in environment-sensitive and high-temperature areas.
基金financially supported by the National Natural Science Foundation of China(No.51974351No.51704322+1 种基金Major Program,No.51991361)the National Science and Technology Major Project of China(No.2016ZX05040-005)。
文摘Regulating rheological properties of water-based drilling fluids has always been a hot topic.This paper proposed a new method for regulating rheological properties of water-based drilling fluids by ultrasonic field.The experimental results showed that the ultrasound increased the viscosity and yield point of bentonite suspension by reducing the particle size of clay,destroying the network structure between clay particles,increasing the mud yield and the cation exchange capacity of bentonite,and promoting the hydration dispersion of bentonite.The change of rheological property showed a memory effect at room temperature and high temperature.Besides,the ultrasonic energy affected the network structure between clays and polymer chains,thus regulating the rheological properties of the bentonite-polymer system.For two types of drilling fluids investigated,the rheology of the poly-sulfonate drilling fluid was regulated by damaging the grid structure between additives and clays by low-power ultrasound and reducing the clay particle size by high-power ultrasound,while the rheology of the deep-water drilling fluid was mainly regulated by disentangling the spatial grid structure between additives.Additionally,ultrasound showed no effect on the lubricity,inhibition and stability of drilling fluids,which proved the feasibility of ultrasound to regulate rheological properties of water-based drilling fluids.
基金Funded by the National Natural Science Foundation of China(31170558)the Fundamental Research Funds for the Central Universities(410500006)
文摘A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in waterborne media.TEM,FTIR,XPS,and EDX determination showed that PAA and SiO2 were coated on the surface of aluminum.Evolved hydrogen detection showed that the corrosion resistance of composite particle had been markedly improved.Maximum corrosion inhibition efficiency of SiO2 coated aluminum(SiO2@Al)was 95.1% while that of double-layer coated aluminum(PAA/SiO2@Al)was 98.8%.Meanwhile,polyacrylic acid layer improved the agglomeration of aluminum significantly.According to the dispersibility test,the particle size of 50% volume fraction [d(0.5)] of aluminum,SiO2@Aland PAA/SiO2@Alwere 42,53,and 34 μm,respectively.
文摘This study presents a simple numerical method that can be used to evaluate the hydrodynamic performances of antifouling paints.Steady Reynolds-averaged Navier-Stokes equations were solved through a finite volume technique,whereas roughness was modeled with experimentally determined roughness functions.First,the methodology was validated with previous experimental studies with a flat plate.Second,flow around the Kriso Container Ship was examined.Lastly,full-scale results were predicted using Granville’s similarity law.Results indicated that roughness has a similar effect on the viscous pressure resistance and frictional resistance around a Reynolds number of 10^7.Moreover,the increase in frictional resistance due to roughness was calculated to be approximately 3%-5%at the ship scale depending on the paint.
基金Supported by China National Science and Technology Major Project(2017ZX05009-003)National Natural Science Foundation(51474231)China National Petroleum Corporation Project(HX20180961)
文摘Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free energy, prevent collapse, protect reservoir, lubricate and increase drilling speed. With this super-amphiphobic agent as the core agent, a super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid system has been developed by combining with other agents based on drilled formation, and compared with high-performance water-based drilling fluid and typical oil based drilling fluid commonly used in oilfields. The results show that the super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid has better rheology, and high temperature and high pressure filtration similar with that of oil-based drilling fluid, inhibiting and lubricating properties close to oil based drilling fluid. Besides, the super-amphiphobic system is non-toxic, safe and environmentally friendly. Field tests show this newly developed drilling fluid system can prevent wellbore collapse, reservoir damage and pipe-sticking, increase drilling speed and lower drilling cost, meeting the requirement of safe, high efficient, economic and environmentally friendly drilling. Compared with other drilling fluids, this new drilling fluid system can reduce downhole complexities by 82.9%, enhance the drilling speed by about 18.5%, lower drilling fluid cost by 39.3%, and increase the daily oil output by more than 1.5 times in the same block.
文摘The performance of local clay-titanium dioxide core-shell extender pigments in alkyd paints has been studied. The physico-mechanical properties of the prepared alkyd paints were evaluated according to ASTM measurements. The effects of various environmental and corrosive factors on the paints were also studied. The study showed that the alkyd paint samples formulated using the core-shell pigments generally had low specific gravity (1.30 – 1.38), an indication that more of the core-shell pigments can be incorporated into the alkyd paints with considerable cost savings. The dry film thicknesses of the paint samples falls within 0.24 - 0.39 mm, suggesting that the samples will perform well as anticorrosive coatings and their adhesion properties are generally good, showing that they can withstand abrasive and corrosive agents. The core-shell extender pigments formulated paint samples were observed to exhibit the best dust-free, tack-free, and through dry times compared to TiO<sub>2</sub> paint formulation. The formulated paint samples generally performed well on exposure to rain and sunlight as well as in distilled water, 2% Na<sub>2</sub>CO<sub>3</sub>, and 2% H<sub>2</sub>SO<sub>4</sub> with only TiO<sub>2</sub> paint formulation exhibiting rust. The good paint performance characteristics obtainable with the core-shell extender pigments are enough evidence to justify their utilization in the surface coatings industry. The performances of these core-shell extender pigments in alkyd paints have shown that they combine the properties of both the clays and titanium dioxide, and have the potential to overcome their disadvantages.
文摘Toxic substances released as a result of leaching from painted surfaces to the aquatic environment affect both fouling organisms and “non-target” biota. Artemia fransiscana nauplii have been considered a useful test system for the examination of toxicity for antifouling paints. In this study, we examined the effect of four “tin free” self-polishing copolymer (SPC) antifouling paints on the larval development of Artemia nauplii. Based on the L(S/V)50 values the order of toxicity of the antifouling paints was: ANTI F > SHARKSKIN > OCEAN T/F > MICRON. Furthermore, the body size of Artemia nauplii was significantly affected at lethal and above lethal L(S/V)5024h values. The body size of 48 h-aged nauplii exposed for the last 24 hours to each of the four SPC antifouling paints was significantly lower than that of the 48 h-aged controls (0.88 ± 0.030 mm). In addition, the body size of 72 h-aged nauplii maintained for the last 24 hours to pure synthetic seawater after exposure for 24 hours to each of the four SPC antifouling paints was significantly lower than that of the 72 h-aged controls (0.96 ±0.027 mm). Overall, the SPCs examined here were substantially toxic to Artemia nauplii, but with different toxicities and modes of action, as a result of the synergistic action of distinct components of the antifouling paints.
基金The authors acknowledge the financial supports from Baosteel-Australia Joint Research&Development Center(BAJC)under the project of BA17004 and Australian Research Council(ARC)under Linkage Project Program(LP150100591)。
文摘Novel water-based nanolubricants using TiO2 nanoparticles(NPs)were synthesised by adding sodium dodecyl benzene sulfonate(SDBS)and glycerol,which exhibited excellent dispersion stability and wettability.The tribological performance of the synthesised nanolubricants was investigated using an Rtec ball-on-disk tribometer,and their application in hot steel rolling was evaluated on a 2-high Hille 100 experimental rolling mill,in comparison to those without SDBS.The water-based nanolubricant containing 4 wt%TiO2 and 0.4 wt%SDBS demonstrated superior tribological performance by decreasing coefficient of friction and ball wear up to 70.5%and 84.3%,respectively,compared to those of pure water.In addition to the lubrication effect,the suspensions also had significant effect on polishing of the work roll surface.The resultant surface improvement thus enabled the decrease in rolling force up to 8.3%under a workpiece reduction of 30%at a rolling temperature of 850◦C.The lubrication mechanisms were primarily ascribed to the formation of lubricating film and ball-bearing effect of the TiO2 NPs.
文摘The purpose of this paper is to make the environmental and occupational health community aware of a serious health risk associated with the common practice of burning industrial paint off of metal surfaces during or prior to welding. On four occasions bystanders and welder/burner personnel have experienced illness as a result of being exposed to the combustion products of isocyanate paints that were being burned off metal surfaces. In each case, the burning and the exposed people were outside in an open environment where the health risk was thought to be minimal due to the open environment with nominal wind movement through the work area. In one case, the person (a burner) developed permanent sensitization to phthalic anhydride as a result of the exposure. Phthalic anhydride was determined to be decomposition product of burned isocyanate paint. In the other three cases (which involved very short exposures), between two and six people became ill but did not develop sensitization. Their symptoms included dizziness, nausea, headache, and breathing difficulty the severity of which varied from very uncomfortable to temporarily incapacitating. This paper discusses the circumstances associated with each event, the approach used to determine that phthalic anhydride was a decomposition product, and some practical things that can be done to avoid having employees become victims of exposure.