We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the micr...We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the microfacet theory and Snell's law, the multiple reflection is considered Nth cosine distributed, and the volume scattering is uniformly distributed in reflection angles according to the experimental results. This model describes the reflection characteristics of thermal coating surfaces more completely and reasonably. Simulation and measurement results of two thermal coating samples SR107 and S781 are given to validate that this three-component model significantly improves the modeling accuracy for thermal coating surfaces compared with the existing BRDF models.展开更多
Thermal spraying technique is widely used in various mechanical parts as a surface reforming technique.However,as demand to maintain superior mechanical performance in harsh operating environment increases,the need fo...Thermal spraying technique is widely used in various mechanical parts as a surface reforming technique.However,as demand to maintain superior mechanical performance in harsh operating environment increases,the need for non-destructive evaluation method for thermal spray coating becomes more important.For this purpose,we thinned the thickness of the thermal sprayed coating by abrasion with blasting and used ultrasonic inspection by means of bottom echo reflection for effective measurement of abrasion quantity in thermal sprayed coating.The results obtained are summarized as follows.When the thickness of thermal sprayed coating becomes thin,the echo height increases.This is because thermal sprayed coatings absorb ultrasonic energy.Ultrasonic energy absorbed by Al2O3 is smaller compared with Fe-13Cr coating.Thermal sprayed coatings submerged in water have a lower echo height compared with air.As mentioned above,the thermal sprayed coating thickness can be estimated using ultrasonic inspection by means of bottom echo back reflection.展开更多
Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and ...Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and low thermal conductivity on the insulating capacity of walls remain uncertain.This work investigates the dynamic thermal performance and energy efficiency of a reflective and insulative composite coating in regions with hot summer and warm winter.A simplified thermal resistance-heat capacitance model of an exterior building wall is established to predict thermal performance.The dynamic temperature and heat flow of the wall are predicted to reduce heat loss through the interior surface of the wall and compared to the conventional coating.The specific impact of the thermal conductivity and solar reflectance of the coating on the heat loss is further investigated to minimize heat loss of the wall.This research shows that the composite coating shows better performance on adjusting outdoor climate change than the other coating.Compared with cement,it reduces the maximum temperature of the exterior surface of the wall by 7.45°C,and the heat loss through the interior surface of the wall by 38%.The heat loss is reduced with the increase of solar reflectance and the reduction of thermal conductivity.The results can provide a useful reference and guidance for the application of reflective and insulative composite coating on building exterior wall to promote their energy-saving use on building envelopes.展开更多
The optical properties of coatings pigmented with different black colorants were systematically investigated and their surface temperatures and cooling energy savings were estimated. The black coatings pigmented with ...The optical properties of coatings pigmented with different black colorants were systematically investigated and their surface temperatures and cooling energy savings were estimated. The black coatings pigmented with chromite iron nickel black and manganese ferrite black spinel colorants are not cool enough to be energy efficient cool black coatings. The cool black coatings pigmented with NIR-transmitting perylene black and dioxazine purple colorants possess a green shade and a violet shade, respectively. The estimated surface temperature reduction values and annual cooling energy savings in Beijing range from 3.0°C and 1.21 kWhm-2yr-1 for the black coating pigmented with chromite iron nickel colorant to 13.8°C and 5.52 kWhm-2yr-1 for the black coating pigmented with dioxazine purple colorant, respectively.展开更多
文摘We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the microfacet theory and Snell's law, the multiple reflection is considered Nth cosine distributed, and the volume scattering is uniformly distributed in reflection angles according to the experimental results. This model describes the reflection characteristics of thermal coating surfaces more completely and reasonably. Simulation and measurement results of two thermal coating samples SR107 and S781 are given to validate that this three-component model significantly improves the modeling accuracy for thermal coating surfaces compared with the existing BRDF models.
文摘Thermal spraying technique is widely used in various mechanical parts as a surface reforming technique.However,as demand to maintain superior mechanical performance in harsh operating environment increases,the need for non-destructive evaluation method for thermal spray coating becomes more important.For this purpose,we thinned the thickness of the thermal sprayed coating by abrasion with blasting and used ultrasonic inspection by means of bottom echo reflection for effective measurement of abrasion quantity in thermal sprayed coating.The results obtained are summarized as follows.When the thickness of thermal sprayed coating becomes thin,the echo height increases.This is because thermal sprayed coatings absorb ultrasonic energy.Ultrasonic energy absorbed by Al2O3 is smaller compared with Fe-13Cr coating.Thermal sprayed coatings submerged in water have a lower echo height compared with air.As mentioned above,the thermal sprayed coating thickness can be estimated using ultrasonic inspection by means of bottom echo back reflection.
基金the National Natural Science Foundation of China(No.52078144)the National Natural Science Foundation of China(No.52108073)the Innovation Research for Postgraduates of Guangzhou University(No.2021GDJC-D15).
文摘Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and low thermal conductivity on the insulating capacity of walls remain uncertain.This work investigates the dynamic thermal performance and energy efficiency of a reflective and insulative composite coating in regions with hot summer and warm winter.A simplified thermal resistance-heat capacitance model of an exterior building wall is established to predict thermal performance.The dynamic temperature and heat flow of the wall are predicted to reduce heat loss through the interior surface of the wall and compared to the conventional coating.The specific impact of the thermal conductivity and solar reflectance of the coating on the heat loss is further investigated to minimize heat loss of the wall.This research shows that the composite coating shows better performance on adjusting outdoor climate change than the other coating.Compared with cement,it reduces the maximum temperature of the exterior surface of the wall by 7.45°C,and the heat loss through the interior surface of the wall by 38%.The heat loss is reduced with the increase of solar reflectance and the reduction of thermal conductivity.The results can provide a useful reference and guidance for the application of reflective and insulative composite coating on building exterior wall to promote their energy-saving use on building envelopes.
文摘The optical properties of coatings pigmented with different black colorants were systematically investigated and their surface temperatures and cooling energy savings were estimated. The black coatings pigmented with chromite iron nickel black and manganese ferrite black spinel colorants are not cool enough to be energy efficient cool black coatings. The cool black coatings pigmented with NIR-transmitting perylene black and dioxazine purple colorants possess a green shade and a violet shade, respectively. The estimated surface temperature reduction values and annual cooling energy savings in Beijing range from 3.0°C and 1.21 kWhm-2yr-1 for the black coating pigmented with chromite iron nickel colorant to 13.8°C and 5.52 kWhm-2yr-1 for the black coating pigmented with dioxazine purple colorant, respectively.