The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc...The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.展开更多
Energy for space vehicles in low Earth orbit(LEO) is mainly generated by solar arrays, and the service time of the vehicles is controlled by the lifetime of these arrays, which depends mainly on the lifetime of the in...Energy for space vehicles in low Earth orbit(LEO) is mainly generated by solar arrays, and the service time of the vehicles is controlled by the lifetime of these arrays, which depends mainly on the lifetime of the interconnects. To increase the service life of LEO satellites, molybdenum/platinum/silver(Mo/Pt/Ag) laminated metal matrix composite(LMMC) interconnectors are widely used in place of Mo/Ag LMMC and Ag interconnectors in solar arrays. A 2D thermal-electrical-mechanical coupled axisymmetric model was established to simulate the behavior of the parallel gap resistance welding(PGRW) process for solar cells and Mo/Pt/Ag composite interconnectors using the commercial software ANSYS. The direct multicoupled PLANE223 element and the contact pair elements TARGE169 and CONTA172 were employed. A transitional meshing method was applied to solve the meshing problem due to the ultrathin(1 μm) intermediate Pt layer. A comparison of the analysis results with the experimental results revealed that the best parameters were 60 W, 60 ms, and 0.0138 MPa. The voltage and current predicted by the finite element method agreed well with the experimental results. This study contributes to a further understanding of the mechanism of PGRW and provides guidance for finite element simulation of the process of welding with an ultrathin interlayer.展开更多
The apparent resistivity of the samples with water-bearing configuration was measured by an electrode-array and 2-D resistivity images of these samples were reconstructed then. The obtained series of tomograms reveal ...The apparent resistivity of the samples with water-bearing configuration was measured by an electrode-array and 2-D resistivity images of these samples were reconstructed then. The obtained series of tomograms reveal the dis tribution and its variation of true resistivity within the samples caused by the changes of crack and liquid distribu tion. Applying this method to the simulation experiment on the electrical properties of rocks, the fracturing and water filling process, which produces the electrical changes, can be brought to light clearly.展开更多
To further enhance the corrosion resistance of the porous micro-arc oxidation(MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg-Al layered double hydroxide(LDH) coating was fabricated on MAO-coated AZ31...To further enhance the corrosion resistance of the porous micro-arc oxidation(MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg-Al layered double hydroxide(LDH) coating was fabricated on MAO-coated AZ31 alloy by using in-situ growth method followed by surface modification with stearic acid. The characteristics of different coatings were investigated by XRD, SEM and EDS. The effect of the hydrothermal treatment time on the formation of the LDH coatings was studied. The results demonstrated that the micro-pores and cracks of MAO coating were gradually sealed via in-situ growing LDH with prolonging hydrothermal treating time. Electrochemical measurement displayed that the lowest corrosion current density, the most positive corrosion potential and the highest impedance modulus were observed for superhydrophobic LDH/MAO coating compared with those of MAO coating and LDH/MAO coating. Immersion experiment proved that the superhydrophobic LDH/MAO coating with the active anti-corrosion capability significantly enhanced the long-term corrosion protection for MAO coated alloy.展开更多
Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matri...Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matrix. Increasing C and Cr contents impair the crack resistance of the layer due to increased amount of brittle carbides. The addition of Ni, Nb or Mo improves the crack resistance of Fe-C-Cr weld surfacing layer by increasing the amount of austenite and forming fine NbC or M 7C 3 carbides in the layer. But, the excessive Nb (>2.50wt%) or Mo (>1.88wt%) impairs the crack resistance of the layer, which has relation with increased carbides or carbide coarsening and austenite matrix solid solution strengthening. The proper combination of C, Cr, Ni, Nb and Mo can further improve not only the crack resistance of Fe-C-Cr weld surfacing layer but also the erosion resistance as a result of fine NbC and M 7C 3 carbides distributing uniformly in austenite matrix. The optimal layer compositions are 3.05wt%C, 20.58wt%Cr, 1.75wt%Ni, 2.00wt%Nb and 1.88wt%Mo.展开更多
Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resi...Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resistance of the layer, and the excessive C and Cr result in decreasing the erosion resistance at 90 deg. erosion. That Mo, Nb or Ti improves the erosion resistance of Fe-C-Cr weld surfacing layer is mainly attributed to increasing the amount of M7C3 and forming fine NbC or TiC in austenite matrix, but the excessive Mo, Nb or Ti is unfavorable. The addition of Mo, Nb and Ti in proper combination possesses stronger effect on improving the erosion resistance and the erosion resistance (εA) of Fe-C-Cr weld surfacing layer with fine NbC, TiC and M7C3 distributing uniformly in austenite matrix obviously increases to 2.81 at 15 deg. erosion and 2.88 at 90 deg. erosion when the layer composition is 3.05C, 20.58Cr, 1.88Mo, 2.00Nb and 1.05Ti (in wt pct).展开更多
The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example....The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.展开更多
Poisson-Boltzmann equation for EDL (electric double layer) and Navier- Stokes equation for liquid flows were numerically solved to investigate resistance effect of electric double layer on liquid flow in microchanne...Poisson-Boltzmann equation for EDL (electric double layer) and Navier- Stokes equation for liquid flows were numerically solved to investigate resistance effect of electric double layer on liquid flow in microchannel. The dimension analysis indicates that the resistance effect of electric double layer can be estimated by an electric resistance number, which is proportional to the square of the liquid dielectric constant and the solid surface zeta potential, and inverse-proportional to the liquid dynamic viscosity, electric conductivity and the square of the channel width. An "electric current density balancing" (ECDB) condition was proposed to evaluate the flow-induced streaming potential, instead of conventional "electric current balancing" (ECB) condition which may induce spurious local backflow in neighborhood of the solid wall of the microchannel. The numerical results of the flow rate loss ratio and velocity profile are also given to demonstrate the resistance effect of electric double layer in microchannel.展开更多
Ni-Cr alloyed layer was formed on surface of Q235 steel by double glow plasma surface metallurgy to improve the corrosion resistance of substrate. The composition and microstructure of alloyed layer was analyzed by SE...Ni-Cr alloyed layer was formed on surface of Q235 steel by double glow plasma surface metallurgy to improve the corrosion resistance of substrate. The composition and microstructure of alloyed layer was analyzed by SEM and XRD. Potentiodynamic polarization and electrochemical impedance spectroscopy was applied to evaluate the corrosion resistance of the alloyed layer. The results showed working pressure had a great effect on structure of Ni-Cr alloyed layer, and the dense and smooth alloyed layer was prepared at 50 Pa working pressure. Compared with substrate, Ni-Cr alloyed layer exhibited higher corrosion potential, lower corrosion current density and larger charge transfer resistance, which indicated that Ni-Cr alloyed layer significantly modified the corrosion resistance of Q235 steel.展开更多
Low-resistivity oil layers are often missed in logging interpretation because of their resistivity close to or below the resistivity of nearby water layers. Typical low-resistivity oil layers have been found in the pa...Low-resistivity oil layers are often missed in logging interpretation because of their resistivity close to or below the resistivity of nearby water layers. Typical low-resistivity oil layers have been found in the past few years in the Putaohua reservoir of the Puao Oilfield in the south of the Daqing placanticline by detailed exploration. Based on a study of micro-geological causes of low-resistivity oil layers, the macro-geological controlling factors were analyzed through comprehensive research of regional depositional background, geological structure, and oil-water relations combined with core, water testing, well logging, and scanning electron microscopy data. The results showed that the formation and distribution of Putaohua low-resistivity oil layers in the Puao Oilfield were controlled by depositional environment, sedimentary facies, diagenesis, motive power of hydrocarbon accumulation, and acidity and alkalinity of reservoir liquid. The low-resistivity oil layers caused by high bound-water saturation were controlled by deposition and diagenesis, those caused by high free-water saturation were controlled by structural amplitude and motive power of hydrocarbon accumulation. Those caused by formation water with high salinity were controlled by the ancient saline water depositional environment and faulted structure and those caused by additional conductivity of shale were controlled by paleoclimate and acidity and alkalinity of reservoir liquid. Consideration of both micro-geological causes and macro-geological controlling factors is important in identifying low-resistivity oil layers.展开更多
In order to develop economically anti-ultraviolet(UV) aging additives to bitumen and extend the comprehensive utilization of lignin materials, lignosulfonate(LS) was selected to intercalate into layered double hydroxi...In order to develop economically anti-ultraviolet(UV) aging additives to bitumen and extend the comprehensive utilization of lignin materials, lignosulfonate(LS) was selected to intercalate into layered double hydroxides(LDHs), then the LS intercalated LDHs(LS-LDHs) were applied to improve UV aging resistance of bitumen. With the characterization of X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, chemical analysis and scanning electron microscopy(SEM), LS was successfully intercalated into the galleries of LDHs. The ultraviolet and visible(UV-vis) absorbance curves showed LS-LDHs had excellent UV absorptive ability from 200 to 400 nm. Thermogravimetry and differential scanning calorimetry(TG-DSC) indicated LS-LDHs could have a good thermal stability during the processing of bitumen. Compared with the LDHs, the LS-LDHs exhibited better performance in UV aging resistance of bitumen.展开更多
In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ...In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy.展开更多
The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments ...The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically.展开更多
The electric field, equations of boundary conditions and calculation formula of apparent resistivity are derived for the azimuthal anisotropy layered media with the DC method based on the anisotropic Ohm's law. Ta...The electric field, equations of boundary conditions and calculation formula of apparent resistivity are derived for the azimuthal anisotropy layered media with the DC method based on the anisotropic Ohm's law. Taking the Schlumberger symmetric system as an example and using the recurrence formula of nuclear function, the paper theoretically simulates a model of four layers with the same anisotropy coefficient for each layer. The deep sounding curves of resistivity and the pattern of contours are obtained for the model. The results show that the theoretical formula is correct, and the deep sounding curves not only exhibit the difference of resistivity among layers but also indicate the anisotropy characteristics of layers.展开更多
As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabri...As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabricated RRAMs with HfO_x/ZnO double-layer as the storage medium to study their thermal stability as well as data retention. The HfO_x/ZnO double-layer is capable of reversible bipolar switching under ultralow switching current(〈 3 μA) with a Schottky emission dominant conduction for the high resistance state and a Poole–Frenkel emission governed conduction for the low resistance state. Compared with a drastically increased switching current at 120℃ for the single HfO_x layer RRAM, the HfO_x/ZnO double-layer exhibits excellent thermal stability and maintains neglectful fluctuations in switching current at high temperatures(up to 180℃), which might be attributed to the increased Schottky barrier height to suppress current at high temperatures. Additionally, the HfO_x/ZnO double-layer exhibits 10-year data retention @85℃ that is helpful for the practical applications in RRAMs.展开更多
A new ultra-low specific on-resistance (Ron,sp) vertical double diffusion metal-oxide-semiconductor field-effect tran- sistor (VDMOS) with continuous electron accumulation (CEA) layer, denoted as CEA-VDMOS, is p...A new ultra-low specific on-resistance (Ron,sp) vertical double diffusion metal-oxide-semiconductor field-effect tran- sistor (VDMOS) with continuous electron accumulation (CEA) layer, denoted as CEA-VDMOS, is proposed and its new current transport mechanism is investigated. It features a trench gate directly extended to the drain, which includes two PN junctions. In on-state, the electron accumulation layers are formed along the sides of the extended gate and introduce two continuous low-resistance current paths from the source to the drain in a cell pitch. This mechanism not only dramatically reduces the Ron,sp but also makes the Ron,sp almost independent of the n-pillar doping concentration (Am). In off-state, the depletion between the n-pillar and p-pillar within the extended trench gate increases the Nn, and further reduces the Ron,sp. Especially, the two PNjunctions within the trench gate support a high gate--drain voltage in the off-state and on-state, re- spectively. However, the extended gate increases the gate capacitance and thus weakens the dynamic performance to some extent. Therefore, the CEA-VDMOS is more suitable for low and medium frequencies application. Simulation indicates that the CEA-VDMOS reduces the Ron,sp by 80% compared with the conventional super-junction VDMOS (CSJ-VDMOS) at the same high breakdown voltage (BV).展开更多
In recent years,the semi-airborne transient electromagnetic method(SATEM)has been rapidly developed in China.Based on the theoretical development of the long grounding wire source transient electromagnetic method,the ...In recent years,the semi-airborne transient electromagnetic method(SATEM)has been rapidly developed in China.Based on the theoretical development of the long grounding wire source transient electromagnetic method,the unmanned aerial vehicle is equipped with the receiving coil to collect the electromagnetic response data at high altitude,making the TEM no longer affected by the terrain and greatly improving the actual working efficiency.However,its flight altitude has not been concerned for a long time.It is generally believed that the change of flight altitude only affects the amplitude of the received response.However,under special circumstances,the electromagnetic response data received at different flight altitudes in the near and far regions may lose the characteristic information of the target geological body.This paper simulates the low resistance thin layer model and analyzes the electromagnetic responses of different receiving heights under different transceiver distances.The results show that in the near area,when the flight altitude is higher than 30 meters or more,the received electromagnetic response will lose the information of the shallow lowresistance thin layer,while in the far area,the change of flight altitude has no obvious influence on the characteristic electromagnetic response information of the received geological body.展开更多
Mar and abrasion resistance were investigated by a progressive load scratch test and steel wool abrasion test, respectively. Two acrylic coating systems including trimethylolpropane triacrylate (TMPTA) and pentaerythr...Mar and abrasion resistance were investigated by a progressive load scratch test and steel wool abrasion test, respectively. Two acrylic coating systems including trimethylolpropane triacrylate (TMPTA) and pentaerythritol triacrylate (PETA) were prepared. A soft base layer was introduced as an intermediate layer between two different types of top layer and poly (methyl methacrylate) (PMMA) substrate to demonstrate the effect of soft base layer on mar and abrasion resistance. Abrasion damage on the coating surface was found to be less severe, when the soft base layer was incorporated into the coating systems. The reduction in scratch coefficient of friction (SCOF) and surface roughness was also observed. The results suggested that mar and abrasion resistance was greatly influenced by the presence of soft base layer, although different top layers were used. Moreover, it was found that abrasion resistance was further improved as the thicker soft base layer was applied.展开更多
Room-temperature negative differential resistance (NDR) has been observed in different types of organic materials. However, detailed study on the influence of the organic material on NDR performance is still scarce....Room-temperature negative differential resistance (NDR) has been observed in different types of organic materials. However, detailed study on the influence of the organic material on NDR performance is still scarce. In this work, room-temperature NDR & observed when CdSe quantum dot (QD) modified ITO is used as the electrode. Furthermore, material dependence of the NDR performance is observed by selecting materials with different charge transporting properties as the active layer, respectively. A peak-to-valley current ratio up to 9 is observed. It is demonstrated that the injection barrier between ITO and the organic active layer plays a decisive role for the device NDR performance. The influence of the aggregation state of CdSe QDs on the NDR performance is also studied, which indicates that the NDR is caused by the resonant tunneling process in the ITO/CdSe QD/organic active layer structure.展开更多
A new type of Ni-Fe-W-P-S wear-resistant brush plating layer isdeveloped, and its microstructure is investigated at different temperatures by usingX-ray diffractometer, transmission electron microscope and surface ana...A new type of Ni-Fe-W-P-S wear-resistant brush plating layer isdeveloped, and its microstructure is investigated at different temperatures by usingX-ray diffractometer, transmission electron microscope and surface analytical appa-ratus. The results revealed that the plating layer is composed of amorphous and mi-crocrystalline matrix and intermetallic compounds. Such a microstructure is verybeneficial to improving its wear-resistance.This new type of plating layer can replacethe chromium plating technique which is very poisonous for human health and harm-ful to the agricultural production.展开更多
基金the National Natural Science Foundation of China(Grant number 51771178)Shaanxi Outstanding Youth Fund project(Grant number 2021JC-45)+2 种基金Key international cooperation projects in Shaanxi Province(Grant number 2020KWZ-007)the Major Program of Science and Technology in Shaanxi Province(Grant number20191102006)Open Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant number 32115019)。
文摘The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.
基金supported by the National Key Research and Development Program of China(Nos. 2018YFB0703904 and 2017YFE0302600)。
文摘Energy for space vehicles in low Earth orbit(LEO) is mainly generated by solar arrays, and the service time of the vehicles is controlled by the lifetime of these arrays, which depends mainly on the lifetime of the interconnects. To increase the service life of LEO satellites, molybdenum/platinum/silver(Mo/Pt/Ag) laminated metal matrix composite(LMMC) interconnectors are widely used in place of Mo/Ag LMMC and Ag interconnectors in solar arrays. A 2D thermal-electrical-mechanical coupled axisymmetric model was established to simulate the behavior of the parallel gap resistance welding(PGRW) process for solar cells and Mo/Pt/Ag composite interconnectors using the commercial software ANSYS. The direct multicoupled PLANE223 element and the contact pair elements TARGE169 and CONTA172 were employed. A transitional meshing method was applied to solve the meshing problem due to the ultrathin(1 μm) intermediate Pt layer. A comparison of the analysis results with the experimental results revealed that the best parameters were 60 W, 60 ms, and 0.0138 MPa. The voltage and current predicted by the finite element method agreed well with the experimental results. This study contributes to a further understanding of the mechanism of PGRW and provides guidance for finite element simulation of the process of welding with an ultrathin interlayer.
文摘The apparent resistivity of the samples with water-bearing configuration was measured by an electrode-array and 2-D resistivity images of these samples were reconstructed then. The obtained series of tomograms reveal the dis tribution and its variation of true resistivity within the samples caused by the changes of crack and liquid distribu tion. Applying this method to the simulation experiment on the electrical properties of rocks, the fracturing and water filling process, which produces the electrical changes, can be brought to light clearly.
基金Project(17JS083) supported by the Key Laboratory Program of Shaanxi Education Department,ChinaProject(2016JZ018) supported by the Key Program of Natural Science Research of Shaanxi Province,ChinaProject(51701162) supported by the National Natural Science Foundation of China
文摘To further enhance the corrosion resistance of the porous micro-arc oxidation(MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg-Al layered double hydroxide(LDH) coating was fabricated on MAO-coated AZ31 alloy by using in-situ growth method followed by surface modification with stearic acid. The characteristics of different coatings were investigated by XRD, SEM and EDS. The effect of the hydrothermal treatment time on the formation of the LDH coatings was studied. The results demonstrated that the micro-pores and cracks of MAO coating were gradually sealed via in-situ growing LDH with prolonging hydrothermal treating time. Electrochemical measurement displayed that the lowest corrosion current density, the most positive corrosion potential and the highest impedance modulus were observed for superhydrophobic LDH/MAO coating compared with those of MAO coating and LDH/MAO coating. Immersion experiment proved that the superhydrophobic LDH/MAO coating with the active anti-corrosion capability significantly enhanced the long-term corrosion protection for MAO coated alloy.
文摘Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matrix. Increasing C and Cr contents impair the crack resistance of the layer due to increased amount of brittle carbides. The addition of Ni, Nb or Mo improves the crack resistance of Fe-C-Cr weld surfacing layer by increasing the amount of austenite and forming fine NbC or M 7C 3 carbides in the layer. But, the excessive Nb (>2.50wt%) or Mo (>1.88wt%) impairs the crack resistance of the layer, which has relation with increased carbides or carbide coarsening and austenite matrix solid solution strengthening. The proper combination of C, Cr, Ni, Nb and Mo can further improve not only the crack resistance of Fe-C-Cr weld surfacing layer but also the erosion resistance as a result of fine NbC and M 7C 3 carbides distributing uniformly in austenite matrix. The optimal layer compositions are 3.05wt%C, 20.58wt%Cr, 1.75wt%Ni, 2.00wt%Nb and 1.88wt%Mo.
文摘Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resistance of the layer, and the excessive C and Cr result in decreasing the erosion resistance at 90 deg. erosion. That Mo, Nb or Ti improves the erosion resistance of Fe-C-Cr weld surfacing layer is mainly attributed to increasing the amount of M7C3 and forming fine NbC or TiC in austenite matrix, but the excessive Mo, Nb or Ti is unfavorable. The addition of Mo, Nb and Ti in proper combination possesses stronger effect on improving the erosion resistance and the erosion resistance (εA) of Fe-C-Cr weld surfacing layer with fine NbC, TiC and M7C3 distributing uniformly in austenite matrix obviously increases to 2.81 at 15 deg. erosion and 2.88 at 90 deg. erosion when the layer composition is 3.05C, 20.58Cr, 1.88Mo, 2.00Nb and 1.05Ti (in wt pct).
基金Supported by the Natural Science Foundation of Shaanxi Province,China(2010JM5003)
文摘The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.
基金Project supported by the National Natural Science Foundation of China (No. 10472036)
文摘Poisson-Boltzmann equation for EDL (electric double layer) and Navier- Stokes equation for liquid flows were numerically solved to investigate resistance effect of electric double layer on liquid flow in microchannel. The dimension analysis indicates that the resistance effect of electric double layer can be estimated by an electric resistance number, which is proportional to the square of the liquid dielectric constant and the solid surface zeta potential, and inverse-proportional to the liquid dynamic viscosity, electric conductivity and the square of the channel width. An "electric current density balancing" (ECDB) condition was proposed to evaluate the flow-induced streaming potential, instead of conventional "electric current balancing" (ECB) condition which may induce spurious local backflow in neighborhood of the solid wall of the microchannel. The numerical results of the flow rate loss ratio and velocity profile are also given to demonstrate the resistance effect of electric double layer in microchannel.
基金the Jiangsu Province Technology Results Transformation Special Funds (No. BA2007036)
文摘Ni-Cr alloyed layer was formed on surface of Q235 steel by double glow plasma surface metallurgy to improve the corrosion resistance of substrate. The composition and microstructure of alloyed layer was analyzed by SEM and XRD. Potentiodynamic polarization and electrochemical impedance spectroscopy was applied to evaluate the corrosion resistance of the alloyed layer. The results showed working pressure had a great effect on structure of Ni-Cr alloyed layer, and the dense and smooth alloyed layer was prepared at 50 Pa working pressure. Compared with substrate, Ni-Cr alloyed layer exhibited higher corrosion potential, lower corrosion current density and larger charge transfer resistance, which indicated that Ni-Cr alloyed layer significantly modified the corrosion resistance of Q235 steel.
基金supported by the National Natural ScienceFoundation Project(No.40173023)
文摘Low-resistivity oil layers are often missed in logging interpretation because of their resistivity close to or below the resistivity of nearby water layers. Typical low-resistivity oil layers have been found in the past few years in the Putaohua reservoir of the Puao Oilfield in the south of the Daqing placanticline by detailed exploration. Based on a study of micro-geological causes of low-resistivity oil layers, the macro-geological controlling factors were analyzed through comprehensive research of regional depositional background, geological structure, and oil-water relations combined with core, water testing, well logging, and scanning electron microscopy data. The results showed that the formation and distribution of Putaohua low-resistivity oil layers in the Puao Oilfield were controlled by depositional environment, sedimentary facies, diagenesis, motive power of hydrocarbon accumulation, and acidity and alkalinity of reservoir liquid. The low-resistivity oil layers caused by high bound-water saturation were controlled by deposition and diagenesis, those caused by high free-water saturation were controlled by structural amplitude and motive power of hydrocarbon accumulation. Those caused by formation water with high salinity were controlled by the ancient saline water depositional environment and faulted structure and those caused by additional conductivity of shale were controlled by paleoclimate and acidity and alkalinity of reservoir liquid. Consideration of both micro-geological causes and macro-geological controlling factors is important in identifying low-resistivity oil layers.
基金Funded by the National Basic Research Program of China(973 Program)(2014CB932104)the Fundamental Research Funds for the Central Universities(2017-YB-007)
文摘In order to develop economically anti-ultraviolet(UV) aging additives to bitumen and extend the comprehensive utilization of lignin materials, lignosulfonate(LS) was selected to intercalate into layered double hydroxides(LDHs), then the LS intercalated LDHs(LS-LDHs) were applied to improve UV aging resistance of bitumen. With the characterization of X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, chemical analysis and scanning electron microscopy(SEM), LS was successfully intercalated into the galleries of LDHs. The ultraviolet and visible(UV-vis) absorbance curves showed LS-LDHs had excellent UV absorptive ability from 200 to 400 nm. Thermogravimetry and differential scanning calorimetry(TG-DSC) indicated LS-LDHs could have a good thermal stability during the processing of bitumen. Compared with the LDHs, the LS-LDHs exhibited better performance in UV aging resistance of bitumen.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51601108 and 52071191)the Natural Science Foundation of Shandong Province(ZR2020ME011).
文摘In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy.
基金The National Science Foundation of China under contract No.40572142the Doctoral Foundation of the Ministry of Education of China under contract No.20040423016.
文摘The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically.
基金Joint Seismological Science Foundation of China (2001009) State Natural Science Foundation of China (40074010) the Project MOST under contract 2001BA601B002-02-01.
文摘The electric field, equations of boundary conditions and calculation formula of apparent resistivity are derived for the azimuthal anisotropy layered media with the DC method based on the anisotropic Ohm's law. Taking the Schlumberger symmetric system as an example and using the recurrence formula of nuclear function, the paper theoretically simulates a model of four layers with the same anisotropy coefficient for each layer. The deep sounding curves of resistivity and the pattern of contours are obtained for the model. The results show that the theoretical formula is correct, and the deep sounding curves not only exhibit the difference of resistivity among layers but also indicate the anisotropy characteristics of layers.
基金supported by the National Natural Science Foundation of China(Grant Nos.61006003 and 61674038)the Natural Science Foundation of Fujian Province,China(Grant Nos.2015J01249 and 2010J05134)+1 种基金the Science Foundation of Fujian Education Department of China(Grant No.JAT160073)the Science Foundation of Fujian Provincial Economic and Information Technology Commission of China(Grant No.83016006)
文摘As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabricated RRAMs with HfO_x/ZnO double-layer as the storage medium to study their thermal stability as well as data retention. The HfO_x/ZnO double-layer is capable of reversible bipolar switching under ultralow switching current(〈 3 μA) with a Schottky emission dominant conduction for the high resistance state and a Poole–Frenkel emission governed conduction for the low resistance state. Compared with a drastically increased switching current at 120℃ for the single HfO_x layer RRAM, the HfO_x/ZnO double-layer exhibits excellent thermal stability and maintains neglectful fluctuations in switching current at high temperatures(up to 180℃), which might be attributed to the increased Schottky barrier height to suppress current at high temperatures. Additionally, the HfO_x/ZnO double-layer exhibits 10-year data retention @85℃ that is helpful for the practical applications in RRAMs.
基金supported by the National Natural Science Foundation of China(Grant Nos.61176069 and 61376079)the Fundamental Research Funds for the Central Universities,China(Grant No.ZYGX2014Z006)
文摘A new ultra-low specific on-resistance (Ron,sp) vertical double diffusion metal-oxide-semiconductor field-effect tran- sistor (VDMOS) with continuous electron accumulation (CEA) layer, denoted as CEA-VDMOS, is proposed and its new current transport mechanism is investigated. It features a trench gate directly extended to the drain, which includes two PN junctions. In on-state, the electron accumulation layers are formed along the sides of the extended gate and introduce two continuous low-resistance current paths from the source to the drain in a cell pitch. This mechanism not only dramatically reduces the Ron,sp but also makes the Ron,sp almost independent of the n-pillar doping concentration (Am). In off-state, the depletion between the n-pillar and p-pillar within the extended trench gate increases the Nn, and further reduces the Ron,sp. Especially, the two PNjunctions within the trench gate support a high gate--drain voltage in the off-state and on-state, re- spectively. However, the extended gate increases the gate capacitance and thus weakens the dynamic performance to some extent. Therefore, the CEA-VDMOS is more suitable for low and medium frequencies application. Simulation indicates that the CEA-VDMOS reduces the Ron,sp by 80% compared with the conventional super-junction VDMOS (CSJ-VDMOS) at the same high breakdown voltage (BV).
基金sponsored by National Natural Resources Foundation program(SKLGP2020K023).
文摘In recent years,the semi-airborne transient electromagnetic method(SATEM)has been rapidly developed in China.Based on the theoretical development of the long grounding wire source transient electromagnetic method,the unmanned aerial vehicle is equipped with the receiving coil to collect the electromagnetic response data at high altitude,making the TEM no longer affected by the terrain and greatly improving the actual working efficiency.However,its flight altitude has not been concerned for a long time.It is generally believed that the change of flight altitude only affects the amplitude of the received response.However,under special circumstances,the electromagnetic response data received at different flight altitudes in the near and far regions may lose the characteristic information of the target geological body.This paper simulates the low resistance thin layer model and analyzes the electromagnetic responses of different receiving heights under different transceiver distances.The results show that in the near area,when the flight altitude is higher than 30 meters or more,the received electromagnetic response will lose the information of the shallow lowresistance thin layer,while in the far area,the change of flight altitude has no obvious influence on the characteristic electromagnetic response information of the received geological body.
文摘Mar and abrasion resistance were investigated by a progressive load scratch test and steel wool abrasion test, respectively. Two acrylic coating systems including trimethylolpropane triacrylate (TMPTA) and pentaerythritol triacrylate (PETA) were prepared. A soft base layer was introduced as an intermediate layer between two different types of top layer and poly (methyl methacrylate) (PMMA) substrate to demonstrate the effect of soft base layer on mar and abrasion resistance. Abrasion damage on the coating surface was found to be less severe, when the soft base layer was incorporated into the coating systems. The reduction in scratch coefficient of friction (SCOF) and surface roughness was also observed. The results suggested that mar and abrasion resistance was greatly influenced by the presence of soft base layer, although different top layers were used. Moreover, it was found that abrasion resistance was further improved as the thicker soft base layer was applied.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61106123 and 61275034the National Basic Research Program of China under Grant No 2013CB328705
文摘Room-temperature negative differential resistance (NDR) has been observed in different types of organic materials. However, detailed study on the influence of the organic material on NDR performance is still scarce. In this work, room-temperature NDR & observed when CdSe quantum dot (QD) modified ITO is used as the electrode. Furthermore, material dependence of the NDR performance is observed by selecting materials with different charge transporting properties as the active layer, respectively. A peak-to-valley current ratio up to 9 is observed. It is demonstrated that the injection barrier between ITO and the organic active layer plays a decisive role for the device NDR performance. The influence of the aggregation state of CdSe QDs on the NDR performance is also studied, which indicates that the NDR is caused by the resonant tunneling process in the ITO/CdSe QD/organic active layer structure.
文摘A new type of Ni-Fe-W-P-S wear-resistant brush plating layer isdeveloped, and its microstructure is investigated at different temperatures by usingX-ray diffractometer, transmission electron microscope and surface analytical appa-ratus. The results revealed that the plating layer is composed of amorphous and mi-crocrystalline matrix and intermetallic compounds. Such a microstructure is verybeneficial to improving its wear-resistance.This new type of plating layer can replacethe chromium plating technique which is very poisonous for human health and harm-ful to the agricultural production.