The first record of abnormal body coloration in Sebastes koreanus Kim and Lee,1994,from the Yellow Sea of China,was documented based on morphological characteristics and DNA barcoding.The two rockfish specimens were c...The first record of abnormal body coloration in Sebastes koreanus Kim and Lee,1994,from the Yellow Sea of China,was documented based on morphological characteristics and DNA barcoding.The two rockfish specimens were collected from the coastal waters of Qingdao,China,and the whole body and all fins of them were red.Of the two red-colored rockfish,there were tiny deep red spots on each fin,2 red radial stripes behind and below the eyes and 1 large deep red blotch on the opercula,while the similar stripe and spot patterns are also present in the S.koreanus specimens with normal body coloration.The countable characteristics of the two specimens are in the range of the morphometry of S.koreanus.To further clarify the species identity and taxonomic status of the two specimens,DNA barcode analysis was carried out.The genetic distance between the red-colored rockfish and S.koreanus was 0,and the minimum net genetic distances between the red-colored rockfish and other Sebastes species except for S.koreanus were 3.0%,which exceeds the threshold of species delimitation.The phylogenetic analysis showed that the DNA barcoding sequences of the two red-colored rockfish clustered with the S.koreanus sequences.The above results of DNA barcode analysis also support that the two red-colored rockfish could be identified as the species of S.koreanus.The mechanism of color variation in S.koreanus is desirable for further research and the species could be an ideal model to study the color-driven speciation of the rockfishes.展开更多
To identify the abnormal characteristics of the oplegnathus punctatus is great importance to the detection of iridovirus disease in the breeding environment.In this paper,an advanced neural network model to identify t...To identify the abnormal characteristics of the oplegnathus punctatus is great importance to the detection of iridovirus disease in the breeding environment.In this paper,an advanced neural network model to identify the characteristics of the oplegnathus puncta-tus and predict its different periods of suffering from iridovirus disease is proposed based on the establishment of a data set.First of all,a standard format data set of oplegnathus punctatus and an abnormal format date set are established in order to verify the effective-ness of the method in this paper.And then,the feature extraction fusion method is used for preprocessing in terms of the abnormal format data set,which combines the edge fea-tures extracted by the improved multi-template Sobel operator and the color features extracted by the HSV model.Finally,an improved VGG-GoogleNet network recognition model comes into being through the fusion and improvement of the VGG and GoogleNet neural network structure.The experiments results show that the prediction accuracy rate for oplegnathus punctatus suffering from iridovirus disease in the the abnormal format data set and the standard format data set are improved,which reach 98.55%and 69.18%.展开更多
基金Supported by the National Key R&D Program of China (No.2018YFD0900803)the China Agriculture Research System of MOF and MARA (No.CARS-47)the Central Public-Interest Scientific Institution Basal Research Fund (Nos.2021JC01,20603022022024)
文摘The first record of abnormal body coloration in Sebastes koreanus Kim and Lee,1994,from the Yellow Sea of China,was documented based on morphological characteristics and DNA barcoding.The two rockfish specimens were collected from the coastal waters of Qingdao,China,and the whole body and all fins of them were red.Of the two red-colored rockfish,there were tiny deep red spots on each fin,2 red radial stripes behind and below the eyes and 1 large deep red blotch on the opercula,while the similar stripe and spot patterns are also present in the S.koreanus specimens with normal body coloration.The countable characteristics of the two specimens are in the range of the morphometry of S.koreanus.To further clarify the species identity and taxonomic status of the two specimens,DNA barcode analysis was carried out.The genetic distance between the red-colored rockfish and S.koreanus was 0,and the minimum net genetic distances between the red-colored rockfish and other Sebastes species except for S.koreanus were 3.0%,which exceeds the threshold of species delimitation.The phylogenetic analysis showed that the DNA barcoding sequences of the two red-colored rockfish clustered with the S.koreanus sequences.The above results of DNA barcode analysis also support that the two red-colored rockfish could be identified as the species of S.koreanus.The mechanism of color variation in S.koreanus is desirable for further research and the species could be an ideal model to study the color-driven speciation of the rockfishes.
基金The work of this paper is jointly supported by the National Natural Science Foundation of China (U1706220,61472172)the Yantai Key R&D Project (2017ZH057,2018ZDCX003,2019XDHZ084).
文摘To identify the abnormal characteristics of the oplegnathus punctatus is great importance to the detection of iridovirus disease in the breeding environment.In this paper,an advanced neural network model to identify the characteristics of the oplegnathus puncta-tus and predict its different periods of suffering from iridovirus disease is proposed based on the establishment of a data set.First of all,a standard format data set of oplegnathus punctatus and an abnormal format date set are established in order to verify the effective-ness of the method in this paper.And then,the feature extraction fusion method is used for preprocessing in terms of the abnormal format data set,which combines the edge fea-tures extracted by the improved multi-template Sobel operator and the color features extracted by the HSV model.Finally,an improved VGG-GoogleNet network recognition model comes into being through the fusion and improvement of the VGG and GoogleNet neural network structure.The experiments results show that the prediction accuracy rate for oplegnathus punctatus suffering from iridovirus disease in the the abnormal format data set and the standard format data set are improved,which reach 98.55%and 69.18%.