Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body...Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.展开更多
Longhole caving method was used to mine gently inclined thick orebody step by step in a test stope of tin mine under complex filling body. The problem that the complex filling body around the stope affects the stabili...Longhole caving method was used to mine gently inclined thick orebody step by step in a test stope of tin mine under complex filling body. The problem that the complex filling body around the stope affects the stability of roof thickness, chamber and spacer pillar in actual mining was investigated; meanwhile, the formed goaf during mining is so vulnerable that surrounding rock collapses early. Based on this point, elasticity mechanics and limit span theory were used to study separately the roof thickness and the span limit of goaf formed in mining, and then a reasonable roof thickness of 8 m and goaf span of 14 m are proposed. In addition, the stability of roof thickness, chamber and spacer pillar were investigated and analyzed by using numerical analysis method; meanwhile, the field monitoring on the displacement of caving chamber was conducted. The results show that the maximum compressive stress of surrounding rock is 20 MPa, and the maximum tensile stress is 1.2 MPa, which is less than the ultimate tensile strength of 2.4 MPa. Moreover, plastic zone has little influence on stope stability. In addition, the displacement of 11 mm is also smaller. The displacement monitoring results are consistent with the numerical results. Thus, the roof thickness and span of goaf proposed are safe.展开更多
It is the basic requirement of the synergetic exploitation of deep mineral resources and geothermal resources to arrange the heat transfer tube in filling body. The heat release performance of filling body directly im...It is the basic requirement of the synergetic exploitation of deep mineral resources and geothermal resources to arrange the heat transfer tube in filling body. The heat release performance of filling body directly impacts on the exploiting efficiency of geothermal energy. Based on heat transfer theory, a three-dimensional unsteady heat transfer model of filling body is established by using FLUENT simulation software. Taking the horizontal U-shaped buried pipe as research object, the variation of temperature field in filling body around buried pipe is analyzed during the heat release process of filling body;the initial temperature of filling body, the diameter of buried pipe, the inlet temperature and inlet velocity of heat transfer fluid influencing of coupling heat transfer, which exists between heat transfer fluid and surrounding filling body within a certain axial distance of buried tube, and influencing of temperature difference between inlet and outlet of heat transfer fluid and on heat transfer performance of filling body are also discussed. It not only lays a theoretical foundation for the synergetic exploitation of mineral resources and geothermal energy in deep mines, but also provides a reference basis for the arrangement of buried pipes in filling body as well as the selection of working conditions for heat transfer fluid.展开更多
Based on comprehensive analysis of seismic,logging,core,thin section data,and stable isotopic compositions of carbon and oxygen,the sedimentary filling characteristics of the Lower Cretaceous Barra Velha Formation seq...Based on comprehensive analysis of seismic,logging,core,thin section data,and stable isotopic compositions of carbon and oxygen,the sedimentary filling characteristics of the Lower Cretaceous Barra Velha Formation sequence in H oil field,Santos Basin,are studied,and the high-frequency sequence stratigraphic framework is established,and the spatial distribution of reef-shoal bodies are predicted and the controlling factors are discussed.During the depositional period of the Barra Velha Formation,the study area is a slope-isolated platform-slope sedimentary pattern from southwest to northeast and the change of climate background from rift to depression periods has resulted in the variation of sedimentary characteristics from the lower third-order sequence SQ1(BVE 300 Member)of low-energy deep water to the upper third-order sequence SQ2(BVE 200 and 100 members)of high-energy shallow water in the Barra Velha Formation.The activities of extensional faults and strike-slip faults in rift period and the sedimentary differentiation from platform margin to intra-platform in depression period made the sedimentary paleogeomorphology in these two periods show features of“three ridges and two depressions”.The reef-shoal bodies mainly developed in the SQ2-LHST period,with vertical development positions restricted by the periodic oscillation of the lake level,and developed on the top of each high-frequency sequence stratigraphic unit in SQ2-LHST in the platform.The strike-slip fault activity controlled the distribution of the reef-shoal bodies on the plane by changing the sedimentary paleogeomorphology.The positive flower-shaped strike-slip faults made the formation of local highlands at the margins of and inside the shallow water platforms and which became high-energy sedimentary zones,creating conditions for the development of reef-shoal bodies.展开更多
基金the National Key R&D Program of China(No.2022YFC2904103)the Key Program of the National Natural Science Foundation of China(No.52034001)+1 种基金the 111 Project(No.B20041)the China National Postdoctoral Program for Innovative Talents(No.BX20230041)。
文摘Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.
基金Project(2012BAK09B02-05)supported by the National Science and Technology Pillar Program during the 12th Five-Year Plan PeriodProject(11KF02)supported by the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety
文摘Longhole caving method was used to mine gently inclined thick orebody step by step in a test stope of tin mine under complex filling body. The problem that the complex filling body around the stope affects the stability of roof thickness, chamber and spacer pillar in actual mining was investigated; meanwhile, the formed goaf during mining is so vulnerable that surrounding rock collapses early. Based on this point, elasticity mechanics and limit span theory were used to study separately the roof thickness and the span limit of goaf formed in mining, and then a reasonable roof thickness of 8 m and goaf span of 14 m are proposed. In addition, the stability of roof thickness, chamber and spacer pillar were investigated and analyzed by using numerical analysis method; meanwhile, the field monitoring on the displacement of caving chamber was conducted. The results show that the maximum compressive stress of surrounding rock is 20 MPa, and the maximum tensile stress is 1.2 MPa, which is less than the ultimate tensile strength of 2.4 MPa. Moreover, plastic zone has little influence on stope stability. In addition, the displacement of 11 mm is also smaller. The displacement monitoring results are consistent with the numerical results. Thus, the roof thickness and span of goaf proposed are safe.
基金Projects(51974225,51874229,51674188,51904224,51904225,51504182) supported by the National Natural Science Foundation of ChinaProjects(2018JM5161,2018JQ5183,2015JQ5187) supported by the Natural Science Basic Research Plan of Shaanxi,China
文摘It is the basic requirement of the synergetic exploitation of deep mineral resources and geothermal resources to arrange the heat transfer tube in filling body. The heat release performance of filling body directly impacts on the exploiting efficiency of geothermal energy. Based on heat transfer theory, a three-dimensional unsteady heat transfer model of filling body is established by using FLUENT simulation software. Taking the horizontal U-shaped buried pipe as research object, the variation of temperature field in filling body around buried pipe is analyzed during the heat release process of filling body;the initial temperature of filling body, the diameter of buried pipe, the inlet temperature and inlet velocity of heat transfer fluid influencing of coupling heat transfer, which exists between heat transfer fluid and surrounding filling body within a certain axial distance of buried tube, and influencing of temperature difference between inlet and outlet of heat transfer fluid and on heat transfer performance of filling body are also discussed. It not only lays a theoretical foundation for the synergetic exploitation of mineral resources and geothermal energy in deep mines, but also provides a reference basis for the arrangement of buried pipes in filling body as well as the selection of working conditions for heat transfer fluid.
基金Supported by the National Science and Technology Major Project of China(2016ZX05033-002-008).
文摘Based on comprehensive analysis of seismic,logging,core,thin section data,and stable isotopic compositions of carbon and oxygen,the sedimentary filling characteristics of the Lower Cretaceous Barra Velha Formation sequence in H oil field,Santos Basin,are studied,and the high-frequency sequence stratigraphic framework is established,and the spatial distribution of reef-shoal bodies are predicted and the controlling factors are discussed.During the depositional period of the Barra Velha Formation,the study area is a slope-isolated platform-slope sedimentary pattern from southwest to northeast and the change of climate background from rift to depression periods has resulted in the variation of sedimentary characteristics from the lower third-order sequence SQ1(BVE 300 Member)of low-energy deep water to the upper third-order sequence SQ2(BVE 200 and 100 members)of high-energy shallow water in the Barra Velha Formation.The activities of extensional faults and strike-slip faults in rift period and the sedimentary differentiation from platform margin to intra-platform in depression period made the sedimentary paleogeomorphology in these two periods show features of“three ridges and two depressions”.The reef-shoal bodies mainly developed in the SQ2-LHST period,with vertical development positions restricted by the periodic oscillation of the lake level,and developed on the top of each high-frequency sequence stratigraphic unit in SQ2-LHST in the platform.The strike-slip fault activity controlled the distribution of the reef-shoal bodies on the plane by changing the sedimentary paleogeomorphology.The positive flower-shaped strike-slip faults made the formation of local highlands at the margins of and inside the shallow water platforms and which became high-energy sedimentary zones,creating conditions for the development of reef-shoal bodies.